
Almost-Optimal  
Sublinear Additive Spanners

Zihan Tan Tianyi Zhang

Rutgers University Tel Aviv University

Graph Sparsification
Given an input graph G, find a smaller graph H with similar shortest paths

Graph Sparsification
Given an input graph G, find a smaller graph H with similar shortest paths

Graph Sparsification

sparsify

Given an input graph G, find a smaller graph H with similar shortest paths

Graph Sparsification

sparsify

similar shortest paths

Given an input graph G, find a smaller graph H with similar shortest paths

Spanners Emulators
• Given an input graph G

• Find a sparse subgraph H with
similar shortest paths

• Given an input graph G

• Find a sparse graph H with
similar shortest paths

Spanners Emulators
• Given an input graph G

• Find a sparse subgraph H with
similar shortest paths

• Given an input graph G

• Find a sparse graph H with
similar shortest paths

Spanners Emulators
• Given an input graph G

• Find a sparse subgraph H with
similar shortest paths

• Given an input graph G

• Find a sparse graph H with
similar shortest paths

Spanners Emulators
• Given an input graph G

• Find a sparse subgraph H with
similar shortest paths

• Given an input graph G

• Find a sparse graph H with
similar shortest paths

Shortcuts not
in graph G

Spanners Emulators
• Given an input graph G

• Find a sparse subgraph H with
similar shortest paths

• Given an input graph G

• Find a sparse graph H with
similar shortest paths

Shortcuts not
in graph G

Graph Spanners

• Unweighted undirected graph and subgraph

• Stretch function f for any : 
 

• Optimal balance between sparsity and stretch f

G = (V, E) H ⊆ G

s, t ∈ V

𝖽𝗂𝗌𝗍G(s, t) ≤ 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t))

|E(H) |

Multiplicative Stretch
• Stretch function f for any : 

 

• Multiplicative stretch:

s, t ∈ V

𝖽𝗂𝗌𝗍G(s, t) ≤ 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t))

f(d) = t ⋅ d

• Definition:  
The girth of a graph is the length of its shortest simple cycle

• Define = largest #edges of n-vertex graph whose girth > t

• Corollary: Size of t-spanner on n-vertex graph is

γ(n, t)

≥ γ(n, t + 1)

detour > t

if girth > t+1

Multiplicative Stretch
• Conjecture [Erdös, 1963]:

• Upper bound [Althöfer et al, 1993] 
There exist spanners of size & stretch

γ(n, t) = Θ(n1+ 1
⌊t/2⌋)

O(n1+ 1
k) f(d) = (2k − 1)d

• Definition:  
The girth of a graph is the length of its shortest simple cycle

• Define = largest #edges of n-vertex graph whose girth > t

• Corollary: Size of t-spanner on n-vertex graph is

γ(n, t)

≥ γ(n, t + 1)

detour > t

if girth > t+1

Multiplicative Stretch
• Conjecture [Erdös, 1963]:

• Upper bound [Althöfer et al, 1993] 
There exist spanners of size & stretch

γ(n, t) = Θ(n1+ 1
⌊t/2⌋)

O(n1+ 1
k) f(d) = (2k − 1)d

• Definition:  
The girth of a graph is the length of its shortest simple cycle

• Define = largest #edges of n-vertex graph whose girth > t

• Corollary: Size of t-spanner on n-vertex graph is

γ(n, t)

≥ γ(n, t + 1)

detour > t

if girth > t+1

What about t=2k,

and fractional values?

Small Additive Stretch

• Stretch function f for any : 
 

• Small additive stretch:  

s, t ∈ V

𝖽𝗂𝗌𝗍G(s, t) ≤ 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t))

f(d) = d+O(1)

Small Additive Stretch
reference additive stretch spanner size

[Aingworth, Chekuri,
Indyk, Motwani, 1999] d+2

[Woodruff, 2006] d+2

[Chechik, 2013] d+4

[Baswana, Kavitha,
Mehlhorn, Pettie, 2006] d+6

[Abboud, Bodwin, 2016]

Small additive stretch: f(d) = d+O(1)

O(n3/2)

O(n7/5)

O(n4/3)

d + no(1) n4/3−o(1)

Ω(n3/2)

Small Additive Stretch
reference additive stretch spanner size

[Aingworth, Chekuri,
Indyk, Motwani, 1999] d+2

[Woodruff, 2006] d+2

[Chechik, 2013] d+4

[Baswana, Kavitha,
Mehlhorn, Pettie, 2006] d+6

[Abboud, Bodwin, 2016]

Small additive stretch: f(d) = d+O(1)

O(n3/2)

O(n7/5)

O(n4/3)

d + no(1) n4/3−o(1)

Ω(n3/2)
How about

odd additive
stretches?

Small Additive Stretch
reference additive stretch spanner size

[Aingworth, Chekuri,
Indyk, Motwani, 1999] d+2

[Woodruff, 2006] d+2

[Chechik, 2013] d+4

[Baswana, Kavitha,
Mehlhorn, Pettie, 2006] d+6

[Abboud, Bodwin, 2016]

Small additive stretch: f(d) = d+O(1)

O(n3/2)

O(n7/5)

O(n4/3)

d + no(1) n4/3−o(1)

Ω(n3/2)
How about

odd additive
stretches?

+5 implies +4
with the same

asymptotic
sparsity

Reduction from even to odd
s

t

input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

s

t

s’

t’

…
…

…

…
…

…

Reduction from even to odd
s

t

input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

s

t

s’

t’

…
…

…

…
…

…

Reduction from even to odd
s

t

input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

s

t

s’

t’

…
…

…

…
…

…

…
…

…

…
…

…

input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

Reduction from even to odd

…
…

…

…
…

…

Build a +5 spanner of size S(2n)
input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

s

t’

Reduction from even to odd

…
…

…

…
…

…

Build a +5 spanner of size S(2n)
input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

-spanner of same stretchS(2n)

s

t

s

t’

Reduction from even to odd

…
…

…

…
…

…

Build a +5 spanner of size S(2n)
input graph G = (V, E) bipartite G′ = (V ∪ V′ , E′)

-spanner of same stretchS(2n)

s

t

Stretch must be even in bipartite-spanner of stretch +4S(2n)

s

t’

Reduction from even to odd

Other stretch functions
Suppose G has n vertices

• Nearly additive stretch:

• Sublinear additive stretch:

• Purely additive stretch:

f(d) = (1 + ϵ)d + β

f(d) = d + o(d)

f(d) = d + o(n)

stretch
d + O(1) (2k − 1)d(1 + ϵ)d + β

d + o(n)

d + o(d)d

Nearly additive

[Elkin & Peleg, 2001]

•

• Size =

f(d) = (1 + ϵ)d + O(k/ϵ)k

(k/ϵ)O(1)n1+ 1
2k+1 − 1

[Abboud, Bodwin, Pettie, 2017]

•

• Lower bound =

f(d) = (1 + ϵ)d + O(k/ϵ)k

n1+ 1
2k+1 − 1

−o(1)

[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Sublinear additive

Nearly additive

[Elkin & Peleg, 2001]

•

• Size =

f(d) = (1 + ϵ)d + O(k/ϵ)k

(k/ϵ)O(1)n1+ 1
2k+1 − 1

[Abboud, Bodwin, Pettie, 2017]

•

• Lower bound =

f(d) = (1 + ϵ)d + O(k/ϵ)k

n1+ 1
2k+1 − 1

−o(1)

[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

What is the
right answer
for sublinear

additive?

Sublinear additive

Sublinear additive stretch
[Abboud, Bodwin, Pettie, 2017]

•  
for some small factor

• Must have edges

f(d) = d + ck ⋅ d1−1/k

ck

n1+ 1
2k − 1

−o(1)

[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Sublinear additive stretch
[Abboud, Bodwin, Pettie, 2017]

•  
for some small factor

• Must have edges

f(d) = d + ck ⋅ d1−1/k

ck

n1+ 1
2k − 1

−o(1)

[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Does not
contradict the
lower bound
because is

small
c2

Sublinear additive stretch
[Abboud, Bodwin, Pettie, 2017]

•  
for some small factor

• Must have edges

f(d) = d + ck ⋅ d1−1/k

ck

n1+ 1
2k − 1

−o(1)

[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

•

• Must have edges

f(d) = d + Ok(d1−1/k)

n1+ 1
2k+1 − 1

−o(1)

Does not
contradict the
lower bound
because is

small
c2

Sublinear additive stretch
[Abboud, Bodwin, Pettie, 2017]

•  
for some small factor

• Must have edges

f(d) = d + ck ⋅ d1−1/k

ck

n1+ 1
2k − 1

−o(1)

[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

•

• Must have edges

f(d) = d + Ok(d1−1/k)

n1+ 1
2k+1 − 1

−o(1)

Apply the lower bound for

f(d) = d + ck+1 ⋅ d1−1/(k+1)

Does not
contradict the
lower bound
because is

small
c2

Sublinear additive stretch
[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Sublinear additive stretch
[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Our result

•

• Size =

f(d) = d + 2k22k/ϵ ⋅ d1−1/k

n1+ 1 + ϵ
2k+1 − 1

Sublinear additive stretch
[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Our result

•

• Size =

f(d) = d + 2k22k/ϵ ⋅ d1−1/k

n1+ 1 + ϵ
2k+1 − 1

[Abboud, Bodwin, Pettie, 2017]

•

• Must have edges

f(d) = d + Ok(d1−1/k)

n1+ 1
2k+1 − 1

−o(1)

Sublinear additive stretch
[Pettie, 2009]

•

• Size =

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]

•

• Size =

f(d) = d + O(1) ⋅ d1/2

n
20
17

Our result

•

• Size =

f(d) = d + 2k22k/ϵ ⋅ d1−1/k

n1+ 1 + ϵ
2k+1 − 1

[Abboud, Bodwin, Pettie, 2017]

•

• Must have edges

f(d) = d + Ok(d1−1/k)

n1+ 1
2k+1 − 1

−o(1)

How about other functions?

Must have edges

Subsumed by

f(d) = d + d1−0.5/k−0.5/(k+1)

< d + ck+1 ⋅ d1−1/(k+1)

n1+ 1
2k+1 − 1

−o(1)

f(d) = d + Ok(1) ⋅ d1−1/k

• Purely additive stretch:

• Linear-size regime: if , what is the smallest ?

f(d) = d + o(n)

E(H) = O(n) o(n)

Linear-size additive spanners

n1/22 n1/11 n2/21 n1/7

[Abboud & Bodwin, 16]

[Pettie & Huang, 18]

[LWWX, 18]

[Bodwin & Hoppenworth, 22]

n3/7 n9/16

[Pettie, 09][Bodwin & V-Williams, 16]

lower bounds upper bounds

• Purely additive stretch:

• Linear-size regime: if , what is the smallest ?

f(d) = d + o(n)

E(H) = O(n) o(n)

Linear-size additive spanners

n1/22 n1/11 n2/21 n1/7

[Abboud & Bodwin, 16]

[Pettie & Huang, 18]

[LWWX, 18]

[Bodwin & Hoppenworth, 22]

n3/7 n9/16

[Pettie, 09][Bodwin & V-Williams, 16]

lower bounds upper bounds

Our result: n0.403

Today’s plan

Sublinear additive spanners:

• Example:

• Sketch:

f(d) = d + O(d1/2), |E(H) | = n8/7+ϵ

f(d) = d + Ok,ϵ(d1−1/k), |E(H) | = n1+ 1 + ϵ
2k+1 − 1

Today’s plan

Sublinear additive spanners:

• Example:

• Sketch:

f(d) = d + O(d1/2), |E(H) | = n8/7+ϵ

f(d) = d + Ok,ϵ(d1−1/k), |E(H) | = n1+ 1 + ϵ
2k+1 − 1

Lemma [Bodwin & V-Williams, 2016]

For any , there exists all set of balls
 such that

Radius:

Covering:

Packing:

R
ℬ = {B(c, r)}c∈V

R ≤ r ≤ 2O(1/ϵ)R

V = ⋃
B∈ℬ

B(c, r)

∑
B∈ℬ

|B(c, 2r) | = n1+ϵ

A ball-covering lemma

Lemma [Bodwin & V-Williams, 2016]

For any , there exists all set of balls
 such that

Radius:

Covering:

Packing:

R
ℬ = {B(c, r)}c∈V

R ≤ r ≤ 2O(1/ϵ)R

V = ⋃
B∈ℬ

B(c, r)

∑
B∈ℬ

|B(c, 2r) | = n1+ϵ

A ball-covering lemma

All the balls

cover the entire graph

{B(c, r)}

Lemma [Bodwin & V-Williams, 2016]

For any , there exists all set of balls
 such that

Radius:

Covering:

Packing:

R
ℬ = {B(c, r)}c∈V

R ≤ r ≤ 2O(1/ϵ)R

V = ⋃
B∈ℬ

B(c, r)

∑
B∈ℬ

|B(c, 2r) | = n1+ϵ

A ball-covering lemma

Total size of

is almost-linear

{B(c,2r)}

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

dist(s, t) = D

s t

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

Find a ball whose core
covers vertex s

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

Find a ball whose core
covers vertex s

Find the rightmost vertex
covered by the shell

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

Find a ball whose core
covers this vertex

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

Find a ball whose core
covers this vertex

Find the rightmost vertex
covered by the shell

• For any distance scale

• Apply the ball-covering lemma with radius

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

distance ≥ D1/2

Covering shortest paths

s t

• For any distance scale

• Apply the ball-covering lemma with radius

• Observation: The #balls below is bounded by

D = 2,4,8,……

R = Θ(D1/2)

D1/2

dist(s, t) = D

Spanner construction

s t

• Observation: The #balls below is bounded by D1/2

Spanner construction

s t

• Observation: The #balls below is bounded by

• Build a +6 additive spanner within each ball of size

D1/2

B(c, 2r) |B(c,2r) |4/3

Spanner construction
• Observation: The #balls below is bounded by

• Build a +6 additive spanner within each ball of size

• Assumption: If each ball , then spanner size

D1/2

B(c, 2r) |B(c,2r) |4/3

|B(c,2r) | < n3/7 < n8/7

s t

Spanner construction
• Observation: The #balls below is bounded by

• Build a +6 additive spanner within each ball of size

• Total stretch is

D1/2

B(c, 2r) |B(c,2r) |4/3

≤ 6 ⋅ #balls = O(D1/2)

s t

+6 +6 +6 +6 +6 +6 +6

Handling large balls
• Assumption: If each ball , then spanner size|B(c,2r) | < n3/7 < n8/7

s t

Handling large balls
• Assumption: If each ball , then spanner size

• A random set of size hits all large balls

|B(c,2r) | < n3/7 < n8/7

S 10n4/7 log n

s tA vertex from S belongs
to this large ball

A vertex from S belongs
to this large ball

Handling large balls
• Assumption: If each ball , then spanner size

• A random set of size hits all large balls

• Only need to preserve pairwise distances among vertices in

|B(c,2r) | < n3/7 < n8/7

S 10n4/7 log n

S

s tA vertex from S belongs
to this large ball

A vertex from S belongs
to this large ball

Pairwise distances of S

Handling large balls
• Assumption: If each ball , then spanner size

• A random set of size hits all large balls

• Only need to preserve pairwise distances among vertices in

• Route s to t through the two hitting vertices in

|B(c,2r) | < n3/7 < n8/7

S 10n4/7 log n

S

S

s t
A short path through S

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

+6 +6 +6 +6 +6 +6

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

+6 +6 +6 +6 +6 +6

Want to preserve
these pairs

Want to preserve
these pairs

Want to preserve
these pairs

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

B(c,2r)

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

B(c,2r)

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

B(c,2r)

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Want to preserve distances
between these pairs

Weaker than standard
spanners, if #pairs is small

B(c,2r)

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Want to preserve distances
between these pairs

Weaker than standard
spanners, if #pairs is small

Trivially, #pairs

Carefully, #pairs

≤ |S |2

≤ |S |

B(c,2r)

Pairwise Spanners

Definition:  
Given a graph and a set of pairs , a pairwise spanner

 has stretch function , if for any

Theorem: [Kavitha, 2015] 
There exists a pairwise spanner for with edges

G = (V, E) P ⊆ V2

H ⊆ G f 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t)) (s, t) ∈ P

f(d) = d+6 Õ(n |P |1/4)

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Pairwise spanner within
 has edges at most: 

 

B(c,2r)

Õ(|B | |S |1/4) ≤ Õ(|B |n1/7)

Trivially, #pairs

Carefully, #pairs

≤ |S |2

≤ |S |

B(c,2r)

Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Pairwise spanner within
 has edges at most: 

 

B(c,2r)

Õ(|B | |S |1/4) ≤ Õ(|B |n1/7)

Trivially, #pairs

Carefully, #pairs

≤ |S |2

≤ |S |

B(c,2r)Total spanner size:

∑
B(c,2r)

|B |n1/7 = n8/7+ϵ

Today’s plan

Sublinear additive spanners:

• Example:

• Sketch:

f(d) = d + O(d1/2), |E(H) | = n8/7+ϵ

f(d) = d + Ok,ϵ(d1−1/k), |E(H) | = n1+ 1 + ϵ
2k+1 − 1

Theorem: [Kavitha, 2015] 
There exists a pairwise spanner for with edges

• This leads to spanners with edges

• In general, we want spanners with edges

Missing component: 
A pairwise spanner for with edges

f(d) = d + 6 Õ(n |P |1/4)

f(d) = d + O(d1/2) n8/7+ϵ

f(d) = d + O(d1−1/k) n1+ 1 + ϵ
2k+1 − 1

f(d) = d + O(d1− 1
k − 1) Õ(n |P |1/2k

)

Pairwise Sublinear Additive Spanners

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for with edges

1. Add to H all edges incident on low-degree vertices (degree)

2. Take a random set of size that dominates all high-
degree vertices

f(d) = d + 6 Õ(n |P |1/4)

≤ |P |1/4

10n log n/ |P |1/4

A path-buying scheme [Kavitha, 2015]

s t

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for with edges

3. Pivot vertices u, v are called “settled”, if the their distance is preserved 

f(d) = d + 6 Õ(n |P |1/4)

𝖽𝗂𝗌𝗍H(u, v) ≤ 𝖽𝗂𝗌𝗍G(u, v) + 2

A path-buying scheme [Kavitha, 2015]

s t

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for with edges

3. Pivot vertices u, v are called “settled”, if the their distance is preserved 

f(d) = d + 6 Õ(n |P |1/4)

𝖽𝗂𝗌𝗍H(u, v) ≤ 𝖽𝗂𝗌𝗍G(u, v) + 2

A path-buying scheme [Kavitha, 2015]

A good path in H

s t

 edgesn/ |P |3/4

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for with edges

4. If many pivot vertices are settled, then we can add edges to
reach a bridge structure

f(d) = d + 6 Õ(n |P |1/4)

n/ |P |3/4

A path-buying scheme [Kavitha, 2015]

s t

 edgesn/ |P |3/4

A good path in H A good path in H

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for with edges

5. If many pivot vertices are not settled, then we can add the entire s-t
path to H, settling at least new pairs

f(d) = d + 6 Õ(n |P |1/4)

|st | ⋅ n/ |P |3/4

A path-buying scheme [Kavitha, 2015]

s t

Add |st| edges to H

settling pairs|st | ⋅ n/ |P |3/4

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for with edges

For each demand pair ,  
(1) either we add edges, or (2) each edge settles
pairs on average

Total size = + #pairs / =

f(d) = d + 6 Õ(n |P |1/4)

(s, t) ∈ P
n/ |P |3/4 n/ |P |3/4

|P | ⋅ n/ |P |3/4 (n/ |P |3/4) n |P |1/4

A path-buying scheme [Kavitha, 2015]

s t

Generalizing the path-buying scheme
Algorithm: 
A pairwise spanner H for with edges

1. Apply the ball-covering lemma with radius

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

R = Θ(D1−1/(k−1))

s t

Algorithm: 
A pairwise spanner H for with edges

1. Apply the ball-covering lemma with radius

2. Decompose the st-path into demand pairs

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

R = Θ(D1−1/(k−1))

Generalizing the path-buying scheme

s t

Algorithm: 
A pairwise spanner H for with edges

3. If many ball centers are settled, then we can add some demand pairs
to reach a bridge structure

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

Generalizing the path-buying scheme

s t

A good path in HA good path in H

Algorithm: 
A pairwise spanner H for with edges

4. If many ball centers are not settled, then we can add all demand-pairs,
settling many new pairs of ball centers

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

Generalizing the path-buying scheme

s t

Assign all of the demand pairs to balls 
Build pairwise spanners within balls recursively

Technical difficulties:

• Balls might have different densities.

• Divide densities into classes, and deal with each class separatelyO(1/ϵ)

Generalizing the path-buying scheme

s t

Further Directions

• Our result: , size =

• Question: No dependency on , better in ?

f(d) = d+2k22k/ϵ ⋅ d1−1/k n1+ 1+ϵ
2k+1 − 1

ϵ k

