Almost-Optimal Sublinear Additive Spanners

Zihan Tan Rutgers University

Tianyi Zhang Tel Aviv University

- Given an input graph G
- Find a sparse subgraph *H* with similar shortest paths

- Given an input graph G
- Find a sparse graph *H* with similar shortest paths

- Given an input graph G
- Find a sparse **subgraph** *H* with similar shortest paths

- Given an input graph G
- Find a sparse graph *H* with similar shortest paths

- Given an input graph G
- Find a sparse subgraph H with similar shortest paths

- Given an input graph G
- Find a sparse graph *H* with similar shortest paths

- Given an input graph G
- Find a sparse subgraph H with similar shortest paths

- Given an input graph G
- Find a sparse graph *H* with similar shortest paths

- Given an input graph G
- Find a sparse **subgraph** *H* with similar shortest paths

- Given an input graph G
- Find a sparse graph *H* with similar shortest paths

Graph Spanners

- Unweighted undirected graph G = (V, E) and subgraph $H \subseteq G$
- Stretch function f for any $s, t \in V$:
- Optimal balance between sparsity |E(H)| and stretch f

$dist_G(s,t) \leq dist_H(s,t) \leq f(dist_G(s,t))$

Multiplicative Stretch

- **Stretch function f** for any $s, t \in V$:
- Multiplicative stretch: $f(d) = t \cdot d$
- **Definition:** The **girth** of a graph is the length of its shortest simple cycle
- Define $\gamma(n, t) =$ largest #edges of n-vertex graph whose girth > t lacksquare
- **<u>Corollary</u>**: Size of t-spanner on n-vertex graph is $\geq \gamma(n, t+1)$

$dist_G(s, t) \leq dist_H(s, t) \leq f(dist_G(s, t))$

Multiplicative Stretch

- Conjecture [Erdös, 1963]: $\gamma(n, t)$
- Upper bound [Althöfer et al, 1993] There exist spanners of size O(n)

- **Definition:** The **girth** of a graph is the length of its shortest simple cycle
- Define $\gamma(n, t) =$ largest #edges of n-vertex graph whose girth > t lacksquare
- **<u>Corollary</u>**: Size of t-spanner on n-vertex graph is $\geq \gamma(n, t+1)$

$$= \Theta(n^{1 + \frac{1}{\lfloor t/2 \rfloor}})$$

$$(1+\frac{1}{k})$$
 & stretch $f(d) = (2k-1)d$

Multiplicative Stretch

- Conjecture [Erdös, 1963]: $\gamma(n, t)$
- Upper bound [Althöfer et al, 1993] There exist spanners of size $O(n^{1+\frac{1}{k}})$ & stretch f(d) = (2k - 1)d

- **Definition:** The **girth** of a graph is the length of its shortest simple cycle
- Define $\gamma(n, t) =$ largest #edges of n-vertex graph whose girth > t
- **<u>Corollary</u>**: Size of t-spanner on n-vertex graph is $\geq \gamma(n, t+1)$

$$= \Theta(n^{1 + \frac{1}{\lfloor t/2 \rfloor}})$$

What about t=2k, and fractional values?

- Stretch function f for any $s, t \in V$:
- Small additive stretch: f(d) = d + O(1)

 $dist_G(s, t) \leq dist_H(s, t) \leq f(dist_G(s, t))$

reference	additive stretch	spanner size
[Aingworth, Chekuri, Indyk, Motwani, 1999]	d+2	$O(n^{3/2})$
[Woodruff, 2006]	d+2	$\Omega(n^{3/2})$
[Chechik, 2013]	d+4	$O(n^{7/5})$
[Baswana, Kavitha, Mehlhorn, Pettie, 2006]	d+6	$O(n^{4/3})$
[Abboud, Bodwin, 2016]	$d + n^{o(1)}$	$n^{4/3-o(1)}$

Small additive stretch: f(d) = d + O(1)

	spanner size	additive stretch	reference
How ab	$O(n^{3/2})$	d+2	[Aingworth, Chekuri, Indyk, Motwani, 1999]
<pre>odd adc stretche</pre>	$\Omega(n^{3/2})$	d+2	[Woodruff, 2006]
	$O(n^{7/5})$	d+4	[Chechik, 2013]
	$O(n^{4/3})$	d+6	[Baswana, Kavitha, Mehlhorn, Pettie, 2006]
	$n^{4/3-o(1)}$	$d + n^{o(1)}$	[Abboud, Bodwin, 2016]

Small additive stretch: f(d) = d + O(1)

reference	additive stretch	spanner size	
[Aingworth, Chekuri, Indyk, Motwani, 1999]	d+2	$O(n^{3/2})$	How at
[Woodruff, 2006]	d+2	$\Omega(n^{3/2})$	odd ado stretch
[Chechik, 2013]	d+4	$O(n^{7/5})$	
[Baswana, Kavitha, Mehlhorn, Pettie, 2006]	d+6	$O(n^{4/3})$	+5 implie
[Abboud, Bodwin, 2016]	$d + n^{o(1)}$	$n^{4/3-o(1)}$	with the solution asymptotic sparsi

Small additive stretch: f(d) = d + O(1)

input graph G = (V, E)

input graph G = (V, E)

input graph G = (V, E)

input graph G = (V, E)

input graph G = (V, E)

bipartite $G' = (V \cup V', E')$ Build a +5 spanner of size S(2n)

input graph G = (V, E)S(2n)-spanner of same stretch

bipartite $G' = (V \cup V', E')$ Build a +5 spanner of size S(2n)

input graph G = (V, E)S(2n)-spanner of same stretch S(2n)-spanner of stretch +4

bipartite $G' = (V \cup V', E')$ Build a +5 spanner of size S(2n)Stretch must be even in bipartite

Other stretch functions

Suppose G has n vertices

- Nearly additive stretch: $f(d) = (1 + \epsilon)d + \beta$
- Sublinear additive stretch: f(d) = d + o(d)
- Purely additive stretch: f(d) = d + o(n)

Nearly additive

[Elkin & Peleg, 2001]

- $f(d) = (1 + \epsilon)d + O(k/\epsilon)^k$
- Size = $(k/\epsilon)^{O(1)} n^{1 + \frac{1}{2^{k+1} 1}}$
- [Abboud, Bodwin, Pettie, 2017]
- $f(d) = (1 + \epsilon)d + O(k/\epsilon)^k$
- Lower bound = $n^{1+\frac{1}{2^{k+1}-1}-o(1)}$

Sublinear additive

[Pettie, 2009]

•
$$f(d) = d + O(k) \cdot d^{1 - 1/k}$$

• Size =
$$kn^{1+\frac{1}{7\cdot(4/3)^{k-2}-2}}$$

[Chechik, 2013]

• $f(d) = d + O(1) \cdot d^{1/2}$

• Size =
$$n^{\frac{20}{17}}$$

Nearly additive

[Elkin & Peleg, 2001]

- $f(d) = (1 + \epsilon)d + O(k/\epsilon)^k$
- Size = $(k/\epsilon)^{O(1)} n^{1+\frac{1}{2^{k+1}-1}}$
- [Abboud, Bodwin, Pettie, 2017]
- $f(d) = (1 + \epsilon)d + O(k/\epsilon)^k$
- Lower bound = $n^{1+\frac{1}{2^{k+1}-1}-o(1)}$

Sublinear additive

[Pettie, 2009]

•
$$f(d) = d + O(k) \cdot d^{1 - 1/k}$$

• Size =
$$kn^{1+\frac{1}{7\cdot(4/3)^{k-2}-2}}$$

[Chechik, 2013]

• $f(d) = d + O(1) \cdot d^{1/2}$

What is the right answer for sublinear additive?

• Size =
$$n^{\frac{20}{17}}$$

[Abboud, Bodwin, Pettie, 2017]

- $f(d) = d + c_k \cdot d^{1-1/k}$ for some small factor c_k
- Must have edges $n^{1+\frac{1}{2^k-1}-o(1)}$

[Pettie, 2009] • $f(d) = d + O(k) \cdot d^{1-1/k}$ • Size = $kn^{1+\frac{1}{7\cdot(4/3)^{k-2}-2}}$ [Chechik, 2013] • $f(d) = d + O(1) \cdot d^{1/2}$ • Size = $n^{\frac{20}{17}}$

[Abboud, Bodwin, Pettie, 2017]

- $f(d) = d + c_k \cdot d^{1-1/k}$ for some small factor c_k
- Must have edges $n^{1+\frac{1}{2^k-1}-o(1)}$

[Abboud, Bodwin, Pettie, 2017]

- $f(d) = d + c_k \cdot d^{1-1/k}$ for some small factor c_k
- Must have edges $n^{1+\frac{1}{2^k-1}-o(1)}$

•
$$f(d) = d + O_k(d^{1-1/k})$$

• Must have edges $n^{1+\frac{1}{2^{k+1}-1}-o(1)}$

[Abboud, Bodwin, Pettie, 2017]

•
$$f(d) = d + c_k \cdot d^{1 - 1/k}$$

for some small factor c_k

Apply the lower bound for
$$f(d) = d + c_{k+1} \cdot d^{1-1/(k+1)}$$

$$n^{1+\frac{1}{2^{k}-1}-o(1)}$$

$$f(d) = d + O_k(d^{1 - 1/k})$$

• Must have edges $n^{1+\frac{1}{2^{k+1}-1}-o(1)}$

- [Pettie, 2009]
- $f(d) = d + O(k) \cdot d^{1-1/k}$

• Size =
$$kn^{1+\frac{1}{7\cdot(4/3)^{k-2}-2}}$$

[Chechik, 2013]

- $f(d) = d + O(1) \cdot d^{1/2}$
- Size = $n^{\frac{20}{17}}$

- [Pettie, 2009]
- $f(d) = d + O(k) \cdot d^{1-1/k}$

• Size =
$$kn^{1+\frac{1}{7\cdot(4/3)^{k-2}-2}}$$

[Chechik, 2013]

- $f(d) = d + O(1) \cdot d^{1/2}$
- Size = $n^{\frac{20}{17}}$

Our result

- $f(d) = d + 2^{k^2 2^k / \epsilon} \cdot d^{1 1/k}$
- Size = $n^{1 + \frac{1+\epsilon}{2^{k+1}-1}}$

- [Pettie, 2009]
- $f(d) = d + O(k) \cdot d^{1-1/k}$

• Size =
$$kn^{1+\frac{1}{7\cdot(4/3)^{k-2}-2}}$$

[Chechik, 2013]

- $f(d) = d + O(1) \cdot d^{1/2}$
- Size = $n^{\frac{20}{17}}$

[Pettie, 2009]
•
$$f(d) = d$$
 How about other functions?
• $f(d) = d + d^{1-0.5/k-0.5/(k+1)} < d + c_{k+1} \cdot d^{1-1/(k+1)}$
• Size = kn
Must have edges $n^{1+\frac{1}{2^{k+1}-1}-o(2^{k+1})}$
[Chechik, 20
[Chechik, 20
 $f(d) = d + O_k(1) \cdot d^{1-1/k}$
• $f(d) = d + O(1) \cdot d^{1/2}$

• Size = $n^{\frac{20}{17}}$

Linear-size additive spanners

- Purely additive stretch: f(d) = d + o(n)
- Linear-size regime: if E(H) = O(n), what is the smallest O(n)?

Linear-size additive spanners

- Purely additive stretch: f(d) = d + o(n)
- Linear-size regime: if E(H) = O(n), what is the smallest O(n)?

Today's plan

Sublinear additive spanners:

- Example: $f(d) = d + O(d^{1/2}), |E(H)| = n^{8/7 + \epsilon}$

• Sketch: $f(d) = d + O_{k,\epsilon}(d^{1-1/k}), |E(H)| = n^{1+\frac{1+\epsilon}{2^{k+1}-1}}$

Today's plan

Sublinear additive spanners:

- Example: $f(d) = d + O(d^{1/2}), |E(H)| = n^{8/7 + \epsilon}$

• Sketch: $f(d) = d + O_{k,\epsilon}(d^{1-1/k}), |E(H)| = n^{1+\frac{1+\epsilon}{2^{k+1}-1}}$

A ball-covering lemma

Lemma [Bodwin & V-Williams, 2016]

For any *R*, there exists all set of balls $\mathscr{B} = \{B(c, r)\}_{c \in V}$ such that

Radius: $R \leq r \leq 2^{O(1/\epsilon)}R$ Covering: $V = \bigcup_{B \in \mathscr{B}} B(c, r)$

Packing: $\sum_{B \in \mathscr{B}} |B(c, 2r)| = n^{1+\epsilon}$

A ball-covering lemma

Lemma [Bodwin & V-Williams, 2016]

For any *R*, there exists all set of balls $\mathscr{B} = \{B(c, r)\}_{c \in V}$ such that

Radius: $R \leq r \leq 2^{O(1/\epsilon)}R$ Covering: $V = \bigcup_{B \in \mathscr{B}} B(c, r)$

Packing: $\sum_{B \in \mathscr{B}} |B(c, 2r)| = n^{1+\epsilon}$

 \bigcirc 0 0 0 0 0 All the balls $\{B(c, r)\}$ cover the entire graph

A ball-covering lemma

Lemma [Bodwin & V-Williams, 2016]

For any *R*, there exists all set of balls $\mathscr{B} = \{B(c, r)\}_{c \in V}$ such that

Radius: $R \leq r \leq 2^{O(1/\epsilon)}R$ Covering: $V = \bigcup_{B \in \mathscr{B}} B(c, r)$

Packing: $\sum_{B \in \mathscr{B}} |B(c, 2r)| = n^{1+\epsilon}$

- For any distance scale $D = 2, 4, 8, \dots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

dist(s, t) = D —

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

S

Find a ball whose core covers this **vertex**

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

Find the rightmost vertex covered by the shell

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$

- For any distance scale $D = 2,4,8,\ldots$
- Apply the ball-covering lemma with radius $R = \Theta(D^{1/2})$
- **Observation:** The **#balls** below is bounded by $D^{1/2}$

• **Observation:** The **#balls** below is bounded by $D^{1/2}$

- **Observation:** The **#balls** below is bounded by $D^{1/2}$
- Build a +6 additive spanner within each ball B(c, 2r) of size $|B(c, 2r)|^{4/3}$

- **Observation:** The **#balls** below is bounded by $D^{1/2}$
- Build a +6 additive spanner within each ball B(c, 2r) of size $|B(c, 2r)|^{4/3}$
- Assumption: If each ball $|B(c,2r)| < n^{3/7}$, then spanner size $< n^{8/7}$

- **Observation:** The **#balls** below is bounded by $D^{1/2}$
- Build a +6 additive spanner within each ball B(c, 2r) of size $|B(c, 2r)|^{4/3}$
- Total stretch is $\leq 6 \cdot \#$ balls = $O(D^{1/2})$

Handling large balls

• Assumption: If each ball $|B(c,2r)| < n^{3/7}$, then spanner size $< n^{8/7}$

• A random set *S* of size $10n^{4/7} \log n$ hits all large balls

Handling large balls

• Assumption: If each ball $|B(c,2r)| < n^{3/7}$, then spanner size $< n^{8/7}$

- Assumption: If each ball $|B(c,2r)| < n^{3/7}$, then spanner size $< n^{8/7}$
- A random set S of size $10n^{4/7} \log n$ hits all large balls
- Only need to preserve pairwise distances among vertices in S

Handling large balls

- Assumption: If each ball $|B(c,2r)| < n^{3/7}$, then spanner size $< n^{8/7}$
- A random set *S* of size $10n^{4/7} \log n$ hits all large balls
- Only need to preserve pairwise distances among vertices in S
- Route s to t through the two hitting vertices in S

Handling large balls

<u>Goal</u>: Approximately preserve pairwise distances in $S \subset V$

Want to preserve distances between these pairs

Weaker than standard spanners, if **#pairs is small**

<u>Goal</u>: Approximately preserve pairwise distances in $S \subset V$

Want to preserve distances between these pairs

Weaker than standard spanners, if **#pairs is small**

Pairwise Spanners

Definition:

Given a graph G = (V, E) and a set of pairs $P \subseteq V^2$, a pairwise spanner $H \subseteq G$ has stretch function f, if $\operatorname{dist}_H(s, t) \leq f(\operatorname{dist}_G(s, t))$ for any $(s, t) \in P$

<u>Theorem</u>: [Kavitha, 2015] There exists a pairwise spanner for f(d) = d+6 with $\tilde{O}(n |P|^{1/4})$ edges

<u>Goal</u>: Approximately preserve pairwise distances in $S \subset V$

Pairwise spanner within B(c,2r) has edges at most: $\tilde{O}(|B||S|^{1/4}) \leq \tilde{O}(|B|n^{1/7})$

<u>Goal</u>: Approximately preserve pairwise distances in $S \subset V$

Pairwise spanner within B(c,2r) has edges at most:

 $|\tilde{O}(|B||S|^{1/4}) \le \tilde{O}(|B|n^{1/7})$

Total spanner size: $\sum_{B(c,2r)} |B| n^{1/7} = n^{8/7+\epsilon}$

Today's plan

Sublinear additive spanners:

• Example: $f(d) = d + O(d^{1/2}), |E(H)| = n^{8/7 + \epsilon}$

• Sketch: $f(d) = d + O_{k,\epsilon}(d^{1-1/k}), |E(H)| = n^{1+\frac{1+\epsilon}{2^{k+1}-1}}$

Pairwise Sublinear Additive Spanners

Theorem: [Kavitha, 2015] There exists a pairwise spanner for f

- This leads to $f(d) = d + O(d^{1/2})$ spanners with $n^{8/7+\epsilon}$ edges

Missing component:

$$f(d) = d + 6 \text{ with } \tilde{O}(n | P |^{1/4}) \text{ edges}$$

• In general, we want $f(d) = d + O(d^{1-1/k})$ spanners with $n^{1+\frac{1+\epsilon}{2^{k+1}-1}}$ edges

A pairwise spanner for $f(d) = d + O(d^{1 - \frac{1}{k-1}})$ with $\tilde{O}(n |P|^{1/2^k})$ edges

A path-buying scheme [Kavitha, 2015]

Algorithm: [Kavitha, 2015]

- 1. Add to **H** all edges incident on low-degree vertices (degree $\leq |P|^{1/4}$)
- 2. Take a random set of size $10n \log n |P|^{1/4}$ that dominates all highdegree vertices

Construct a pairwise spanner **H** for f(d) = d + 6 with $\tilde{O}(n |P|^{1/4})$ edges
Algorithm: [Kavitha, 2015]

3. Pivot vertices $u_1 \vee v$ are called "settled", if the their distance is preserved $dist_H(u, v) \leq dist_G(u, v) + 2$

Construct a pairwise spanner **H** for f(d) = d + 6 with $\tilde{O}(n |P|^{1/4})$ edges

Algorithm: [Kavitha, 2015]

 $dist_H(u, v) \leq dist_G(u, v) + 2$

- Construct a pairwise spanner **H** for f(d) = d + 6 with $\tilde{O}(n |P|^{1/4})$ edges
- 3. Pivot vertices u, v are called "settled", if the their distance is preserved

Algorithm: [Kavitha, 2015]

reach a bridge structure

Construct a pairwise spanner **H** for f(d) = d + 6 with $\tilde{O}(n |P|^{1/4})$ edges

4. If many pivot vertices are settled, then we can add $n/|P|^{3/4}$ edges to

Algorithm: [Kavitha, 2015]

path to H, settling at least $|st| \cdot n/|P|^{3/4}$ new pairs

Construct a pairwise spanner **H** for f(d) = d + 6 with $\tilde{O}(n |P|^{1/4})$ edges

5. If many pivot vertices are not settled, then we can add the entire s-t

Add st edges to H

Algorithm: [Kavitha, 2015]

For each demand pair $(s, t) \in P$, (1) either we add $n/|P|^{3/4}$ edges, or (2) each edge settles $n/|P|^{3/4}$ pairs on average

Total size = $|P| \cdot n/|P|^{3/4} + \#$ pairs / $(n/|P|^{3/4}) = n |P|^{1/4}$

Construct a pairwise spanner **H** for f(d) = d + 6 with $\tilde{O}(n | P |^{1/4})$ edges

Algorithm:

1. Apply the ball-covering lemma with radius $R = \Theta(D^{1-1/(k-1)})$

- A pairwise spanner **H** for $f(d) = d + O(d^{1-1/(k-1)})$ with $\tilde{O}(n |P|^{1/2^k})$ edges

Algorithm:

- 1. Apply the ball-covering lemma with radius $R = \Theta(D^{1-1/(k-1)})$
- Decompose the st-path into demand pairs

A pairwise spanner **H** for $f(d) = d + O(d^{1-1/(k-1)})$ with $\tilde{O}(n |P|^{1/2^k})$ edges

Algorithm:

3. If many ball centers are settled, then we can add some demand pairs to reach a **bridge structure**

A pairwise spanner **H** for $f(d) = d + O(d^{1-1/(k-1)})$ with $\tilde{O}(n |P|^{1/2^k})$ edges

Algorithm:

A pairwise spanner **H** for f(d) = d -

4. If many ball centers are not settled, then we can add all demand-pairs, settling many new pairs of ball centers

+
$$O(d^{1-1/(k-1)})$$
 with $\tilde{O}(n |P|^{1/2^k})$ edges

Assign all of the demand pairs to balls Build pairwise spanners within balls recursively

Technical difficulties:

- Balls might have different densities.

Divide densities into $O(1/\epsilon)$ classes, and deal with each class separately

• Our result: $f(d) = d + 2^{k^2}$

• Question: No dependency on ϵ , better in k?

Further Directions

$${}^{2}2^{k}/\epsilon \cdot d^{1-1/k}$$
, size = $n^{1+\frac{1+\epsilon}{2^{k+1}-1}}$