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• Given an input graph G 

• Find a sparse graph H with 
similar shortest paths

Shortcuts not 
in graph G



Graph Spanners

• Unweighted undirected graph  and subgraph 


• Stretch function f for any : 
 
                          


• Optimal balance between sparsity  and stretch f

G = (V, E) H ⊆ G

s, t ∈ V

𝖽𝗂𝗌𝗍G(s, t) ≤ 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t))

|E(H) |



Multiplicative Stretch
• Stretch function f for any : 

 
                          


• Multiplicative stretch:  

s, t ∈ V

𝖽𝗂𝗌𝗍G(s, t) ≤ 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t))

f(d) = t ⋅ d

• Definition:  
The girth of a graph is the length of its shortest simple cycle


• Define  = largest #edges of n-vertex graph whose girth > t


• Corollary: Size of t-spanner on n-vertex graph is

γ(n, t)

≥ γ(n, t + 1)

detour > t

if girth > t+1
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• Conjecture [Erdös, 1963]:   

• Upper bound [Althöfer et al, 1993] 
There exist spanners of size  & stretch 

γ(n, t) = Θ(n1+ 1
⌊t/2⌋ )

O(n1+ 1
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Multiplicative Stretch
• Conjecture [Erdös, 1963]:   

• Upper bound [Althöfer et al, 1993] 
There exist spanners of size  & stretch 

γ(n, t) = Θ(n1+ 1
⌊t/2⌋ )

O(n1+ 1
k ) f(d) = (2k − 1)d

• Definition:  
The girth of a graph is the length of its shortest simple cycle


• Define  = largest #edges of n-vertex graph whose girth > t


• Corollary: Size of t-spanner on n-vertex graph is

γ(n, t)

≥ γ(n, t + 1)

detour > t

if girth > t+1

What about t=2k,

and fractional values?



Small Additive Stretch

• Stretch function f for any : 
 
                          


• Small additive stretch:   

s, t ∈ V

𝖽𝗂𝗌𝗍G(s, t) ≤ 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t))

f(d) = d+O(1)



Small Additive Stretch
reference additive stretch spanner size

[Aingworth, Chekuri,  
Indyk, Motwani, 1999] d+2

[Woodruff, 2006] d+2

[Chechik, 2013] d+4

[Baswana, Kavitha, 
Mehlhorn, Pettie, 2006] d+6

[Abboud, Bodwin, 2016]

Small additive stretch:  f(d) = d+O(1)

O(n3/2)

O(n7/5)

O(n4/3)

d + no(1) n4/3−o(1)

Ω(n3/2)
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Small Additive Stretch
reference additive stretch spanner size

[Aingworth, Chekuri,  
Indyk, Motwani, 1999] d+2

[Woodruff, 2006] d+2

[Chechik, 2013] d+4

[Baswana, Kavitha, 
Mehlhorn, Pettie, 2006] d+6

[Abboud, Bodwin, 2016]

Small additive stretch:  f(d) = d+O(1)

O(n3/2)

O(n7/5)

O(n4/3)

d + no(1) n4/3−o(1)

Ω(n3/2)
How about 

odd additive 
stretches?

+5 implies +4 
with the same 

asymptotic 
sparsity
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Build a +5 spanner of size S(2n)
input graph G = (V, E) bipartite G′￼ = (V ∪ V′￼, E′￼)

-spanner of same stretchS(2n)

s

t

Stretch must be even in bipartite-spanner of stretch +4S(2n)

s

t’

Reduction from even to odd



Other stretch functions
Suppose G has n vertices


• Nearly additive stretch:     


• Sublinear additive stretch:      


• Purely additive stretch:       

f(d) = (1 + ϵ)d + β

f(d) = d + o(d)

f(d) = d + o(n)

stretch
d + O(1) (2k − 1)d(1 + ϵ)d + β

d + o(n)

d + o(d)d



Nearly additive             

[Elkin & Peleg, 2001]


• 


• Size = 

f(d) = (1 + ϵ)d + O(k/ϵ)k

(k/ϵ)O(1)n1+ 1
2k+1 − 1

[Abboud, Bodwin, Pettie, 2017]


• 


• Lower bound = 

f(d) = (1 + ϵ)d + O(k/ϵ)k

n1+ 1
2k+1 − 1

−o(1)

[Pettie, 2009]


• 


• Size = 

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]


• 


• Size = 

f(d) = d + O(1) ⋅ d1/2

n
20
17

Sublinear additive
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• 


• Size = 

f(d) = d + O(1) ⋅ d1/2

n
20
17

What is the 
right answer 
for sublinear 

additive?

Sublinear additive



Sublinear additive stretch
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•   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•   
for some small factor 


• Must have edges 

f(d) = d + ck ⋅ d1−1/k

ck

n1+ 1
2k − 1

−o(1)

[Pettie, 2009]


• 


• Size = 

f(d) = d + O(k) ⋅ d1−1/k

kn1+ 1
7 ⋅ (4/3)k−2 − 2

[Chechik, 2013]


• 


• Size = 

f(d) = d + O(1) ⋅ d1/2

n
20
17

•  


• Must have edges 

f(d) = d + Ok(d1−1/k)

n1+ 1
2k+1 − 1

−o(1)

Apply the lower bound for 

f(d) = d + ck+1 ⋅ d1−1/(k+1)

Does not 
contradict the 
lower bound 
because  is 

small
c2
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• 


• Size = 

f(d) = d + 2k22k/ϵ ⋅ d1−1/k

n1+ 1 + ϵ
2k+1 − 1

[Abboud, Bodwin, Pettie, 2017]


•  


• Must have edges 

f(d) = d + Ok(d1−1/k)

n1+ 1
2k+1 − 1

−o(1)

How about other functions? 




Must have edges 


Subsumed by 

f(d) = d + d1−0.5/k−0.5/(k+1)

< d + ck+1 ⋅ d1−1/(k+1)

n1+ 1
2k+1 − 1

−o(1)

f(d) = d + Ok(1) ⋅ d1−1/k



• Purely additive stretch:     


• Linear-size regime:     if , what is the smallest ?

f(d) = d + o(n)

E(H) = O(n) o(n)

Linear-size additive spanners

n1/22 n1/11 n2/21 n1/7

[Abboud & Bodwin, 16]

[Pettie & Huang, 18]

[LWWX, 18]

[Bodwin & Hoppenworth, 22]

n3/7 n9/16

[Pettie, 09][Bodwin & V-Williams, 16]

lower bounds upper bounds



• Purely additive stretch:     


• Linear-size regime:     if , what is the smallest ?

f(d) = d + o(n)

E(H) = O(n) o(n)

Linear-size additive spanners

n1/22 n1/11 n2/21 n1/7

[Abboud & Bodwin, 16]

[Pettie & Huang, 18]

[LWWX, 18]

[Bodwin & Hoppenworth, 22]

n3/7 n9/16

[Pettie, 09][Bodwin & V-Williams, 16]

lower bounds upper bounds

Our result: n0.403



Today’s plan

Sublinear additive spanners: 

• Example:     


• Sketch:       

f(d) = d + O(d1/2), |E(H) | = n8/7+ϵ

f(d) = d + Ok,ϵ(d1−1/k), |E(H) | = n1+ 1 + ϵ
2k+1 − 1
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Sublinear additive spanners: 

• Example:     


• Sketch:       

f(d) = d + O(d1/2), |E(H) | = n8/7+ϵ

f(d) = d + Ok,ϵ(d1−1/k), |E(H) | = n1+ 1 + ϵ
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Lemma [Bodwin & V-Williams, 2016] 

For any , there exists all set of balls 
 such that


Radius:        


Covering:    


Packing:   

R
ℬ = {B(c, r)}c∈V

R ≤ r ≤ 2O(1/ϵ)R

V = ⋃
B∈ℬ

B(c, r)

∑
B∈ℬ

|B(c, 2r) | = n1+ϵ

A ball-covering lemma
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All the balls  

cover the entire graph

{B(c, r)}



Lemma [Bodwin & V-Williams, 2016] 

For any , there exists all set of balls 
 such that


Radius:        


Covering:    


Packing:   

R
ℬ = {B(c, r)}c∈V

R ≤ r ≤ 2O(1/ϵ)R

V = ⋃
B∈ℬ

B(c, r)

∑
B∈ℬ

|B(c, 2r) | = n1+ϵ

A ball-covering lemma

Total size of  

is almost-linear

{B(c,2r)}



• For any distance scale  
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D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t
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• For any distance scale  

• Apply the ball-covering lemma with radius 

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

Find a ball whose core 
covers this vertex

Find the rightmost vertex 
covered by the shell



• For any distance scale  

• Apply the ball-covering lemma with radius 

D = 2,4,8,……

R = Θ(D1/2)

Covering shortest paths

s t

distance ≥ D1/2



Covering shortest paths

s t

• For any distance scale  

• Apply the ball-covering lemma with radius  

• Observation: The #balls below is bounded by 

D = 2,4,8,……

R = Θ(D1/2)

D1/2

dist(s, t) = D



Spanner construction

s t

• Observation: The #balls below is bounded by D1/2



Spanner construction

s t

• Observation: The #balls below is bounded by 


• Build a +6 additive spanner within each ball  of size 

D1/2

B(c, 2r) |B(c,2r) |4/3



Spanner construction
• Observation: The #balls below is bounded by 


• Build a +6 additive spanner within each ball  of size 


• Assumption: If each ball , then spanner size

D1/2

B(c, 2r) |B(c,2r) |4/3

|B(c,2r) | < n3/7 < n8/7

s t



Spanner construction
• Observation: The #balls below is bounded by 


• Build a +6 additive spanner within each ball  of size 


• Total stretch is

D1/2

B(c, 2r) |B(c,2r) |4/3

≤ 6 ⋅ #balls = O(D1/2)

s t

+6 +6 +6 +6 +6 +6 +6



Handling large balls
• Assumption: If each ball , then spanner size|B(c,2r) | < n3/7 < n8/7

s t



Handling large balls
• Assumption: If each ball , then spanner size 


• A random set  of size  hits all large balls

|B(c,2r) | < n3/7 < n8/7

S 10n4/7 log n

s tA vertex from S belongs 
to this large ball

A vertex from S belongs 
to this large ball



Handling large balls
• Assumption: If each ball , then spanner size 


• A random set  of size  hits all large balls 

• Only need to preserve pairwise distances among vertices in 

|B(c,2r) | < n3/7 < n8/7

S 10n4/7 log n

S

s tA vertex from S belongs 
to this large ball

A vertex from S belongs 
to this large ball

Pairwise distances of S



Handling large balls
• Assumption: If each ball , then spanner size 


• A random set  of size  hits all large balls 

• Only need to preserve pairwise distances among vertices in 


• Route s to t through the two hitting vertices in 

|B(c,2r) | < n3/7 < n8/7

S 10n4/7 log n

S

S

s t
A short path through S



Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners
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Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Want to preserve distances 
between these pairs 

Weaker than standard 
spanners, if #pairs is small

Trivially, #pairs 


Carefully, #pairs

≤ |S |2

≤ |S |

B(c,2r)



Pairwise Spanners

Definition:  
Given a graph  and a set of pairs , a pairwise spanner 

 has stretch function , if  for any 


Theorem: [Kavitha, 2015] 
There exists a pairwise spanner for  with  edges 

G = (V, E) P ⊆ V2

H ⊆ G f 𝖽𝗂𝗌𝗍H(s, t) ≤ f(𝖽𝗂𝗌𝗍G(s, t)) (s, t) ∈ P

f(d) = d+6 Õ(n |P |1/4 )



Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Pairwise spanner within 
 has edges at most: 

 
 

B(c,2r)

Õ( |B | |S |1/4 ) ≤ Õ( |B |n1/7)

Trivially, #pairs 


Carefully, #pairs

≤ |S |2

≤ |S |

B(c,2r)



Goal: Approximately preserve pairwise distances in S ⊂ V

Reduction to pairwise spanners

Pairwise spanner within 
 has edges at most: 

 
 

B(c,2r)

Õ( |B | |S |1/4 ) ≤ Õ( |B |n1/7)

Trivially, #pairs 


Carefully, #pairs

≤ |S |2

≤ |S |

B(c,2r)Total spanner size:

∑
B(c,2r)

|B |n1/7 = n8/7+ϵ



Today’s plan

Sublinear additive spanners: 

• Example:     


• Sketch:       

f(d) = d + O(d1/2), |E(H) | = n8/7+ϵ

f(d) = d + Ok,ϵ(d1−1/k), |E(H) | = n1+ 1 + ϵ
2k+1 − 1



Theorem: [Kavitha, 2015] 
There exists a pairwise spanner for  with  edges 


• This leads to  spanners with  edges


• In general, we want  spanners with  edges


Missing component: 
A pairwise spanner for  with  edges

f(d) = d + 6 Õ(n |P |1/4 )

f(d) = d + O(d1/2) n8/7+ϵ

f(d) = d + O(d1−1/k) n1+ 1 + ϵ
2k+1 − 1

f(d) = d + O(d1− 1
k − 1 ) Õ(n |P |1/2k

)

Pairwise Sublinear Additive Spanners



Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for  with  edges


1. Add to H all edges incident on low-degree vertices (degree )


2. Take a random set of size  that dominates all high-
degree vertices

f(d) = d + 6 Õ(n |P |1/4 )

≤ |P |1/4

10n log n/ |P |1/4

A path-buying scheme [Kavitha, 2015]

s t



Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for  with  edges


3.  Pivot vertices u, v are called “settled”, if the their distance is preserved 
                               

f(d) = d + 6 Õ(n |P |1/4 )

𝖽𝗂𝗌𝗍H(u, v) ≤ 𝖽𝗂𝗌𝗍G(u, v) + 2

A path-buying scheme [Kavitha, 2015]

s t



Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for  with  edges


3.  Pivot vertices u, v are called “settled”, if the their distance is preserved 
                               

f(d) = d + 6 Õ(n |P |1/4 )

𝖽𝗂𝗌𝗍H(u, v) ≤ 𝖽𝗂𝗌𝗍G(u, v) + 2

A path-buying scheme [Kavitha, 2015]

A good path in H

s t



 edgesn/ |P |3/4

Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for  with  edges


4.  If many pivot vertices are settled, then we can add  edges to 
reach a bridge structure

f(d) = d + 6 Õ(n |P |1/4 )

n/ |P |3/4

A path-buying scheme [Kavitha, 2015]

s t

 edgesn/ |P |3/4

A good path in H A good path in H



Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for  with  edges


5.  If many pivot vertices are not settled, then we can add the entire s-t 
path to H, settling at least  new pairs

f(d) = d + 6 Õ(n |P |1/4 )

|st | ⋅ n/ |P |3/4

A path-buying scheme [Kavitha, 2015]

s t

Add |st| edges to H

settling  pairs|st | ⋅ n/ |P |3/4



Algorithm: [Kavitha, 2015] 
Construct a pairwise spanner H for  with  edges


For each demand pair ,  
(1) either we add  edges, or (2) each edge settles  
pairs on average


Total size =  + #pairs /  = 

f(d) = d + 6 Õ(n |P |1/4 )

(s, t) ∈ P
n/ |P |3/4 n/ |P |3/4

|P | ⋅ n/ |P |3/4 (n/ |P |3/4 ) n |P |1/4

A path-buying scheme [Kavitha, 2015]

s t



Generalizing the path-buying scheme
Algorithm: 
A pairwise spanner H for  with  edges


1.  Apply the ball-covering lemma with radius 

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

R = Θ(D1−1/(k−1))

s t



Algorithm: 
A pairwise spanner H for  with  edges


1.  Apply the ball-covering lemma with radius 


2.  Decompose the st-path into demand pairs

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

R = Θ(D1−1/(k−1))

Generalizing the path-buying scheme

s t



Algorithm: 
A pairwise spanner H for  with  edges


3.  If many ball centers are settled, then we can add some demand pairs 
to reach a bridge structure

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

Generalizing the path-buying scheme

s t

A good path in HA good path in H



Algorithm: 
A pairwise spanner H for  with  edges


4.  If many ball centers are not settled, then we can add all demand-pairs, 
settling many new pairs of ball centers

f(d) = d + O(d1−1/(k−1)) Õ(n |P |1/2k
)

Generalizing the path-buying scheme

s t

Assign all of the demand pairs to balls 
Build pairwise spanners within balls recursively



Technical difficulties:


• Balls might have different densities.


• Divide densities into  classes, and deal with each class separatelyO(1/ϵ)

Generalizing the path-buying scheme

s t



Further Directions

• Our result:     , size = 


• Question:    No dependency on , better in  ?

f(d) = d+2k22k/ϵ ⋅ d1−1/k n1+ 1+ϵ
2k+1 − 1

ϵ k


