Fully Dynamic Maximal Independent Set in Expected Poly-Log Update Time

Shiri Chechik, Tianyi Zhang

Tel Aviv University, Tsinghua University

Definition: dynamic MIS

- Given an undirected simple graph G = (V, E)
- A sequence of edge ins / del by an oblivious adversary
- Explicitly maintain a maximal independent set

Input: Updates to G			
Picture	5 4		
Output: Changes to the MIS			

Input: Updates to G		Delete (1, 3)	
Picture	(5) (4) (2) (3) (3) (4)	1 2 3 3	
Output: Changes to the MIS			

Input: Updates to G		Delete (1, 3)	
Picture	1 2 3 3	(1) (2) (3) (3) (4)	
Output: Changes to the MIS		3 joins MIS	

Input: Updates to G		Delete (1, 3)	Delete (1, 4)	
Picture	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(1)—(2) (3) (5)—(4)	1 2 3 4	
Output: Changes to the MIS		3 joins MIS		

Input: Updates to G		Delete (1, 3)	Delete (1, 4)	
Picture	1 2 3 5 4	(1)—(2) (3) (4)	1 2 3 5 4	
Output: Changes to the MIS		3 joins MIS	4 joins MIS	

Input: Updates to G		Delete (1, 3)	Delete (1, 4)	Insert (3, 4)
Picture	(1) (2) (3) (3) (4)	(1)—(2) (3) (4)	1 2 3 4	1 2 3 4
Output: Changes to the MIS		3 joins MIS	4 joins MIS	

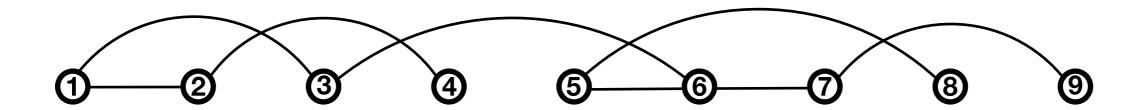
Input: Updates to G		Delete (1, 3)	Delete (1, 4)	Insert (3, 4)	
Picture	1 2 3 3	(1)—(2) (3) (3)	1 2 3 4	1 2 3 4	
Output: Changes to the MIS		3 joins MIS	4 joins MIS	4 leaves MIS	

A short history

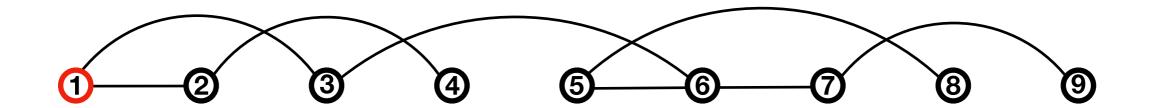
• n = # of vertices, m = # of edges, $\Delta = \max$ -deg of G

Ref	[AOSS'18]	[GK'18] [DZ'18]	[DZ'18]	[AOSS'19]	Ours	[BDH+'19]
Update time	$O(m^{3/4})$	$O(m^{2/3})$	$O(m^{1/2})$	$\tilde{O}(n^{1/2})$	$O(\log^4 n)$	$O(\log^2 n \log^2 \Delta)$
Det?	Yes	Yes	No	No	No	No

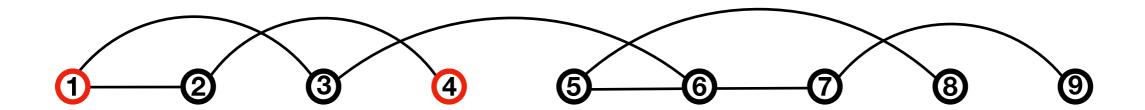
- Given a random order π of all vertices
- Go over each vertex in order π , add it to MIS if not yet dominated



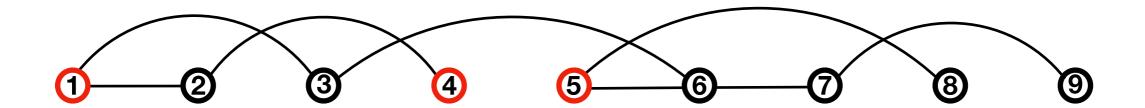
- Given a random order π of all vertices
- Go over each vertex in order π , add it to MIS if not yet dominated



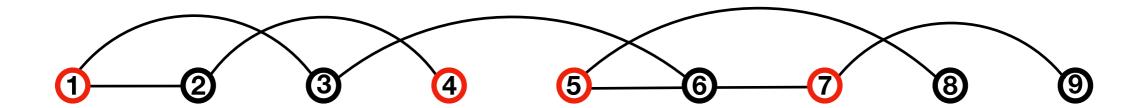
- Given a random order π of all vertices
- Go over each vertex in order π , add it to MIS if not yet dominated



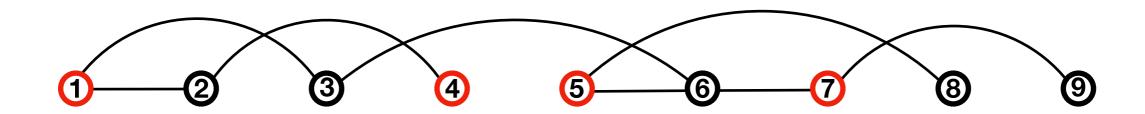
- Given a random order π of all vertices
- Go over each vertex in order π , add it to MIS if not yet dominated



- Given a random order π of all vertices
- Go over each vertex in order π , add it to MIS if not yet dominated



- Given a random order π of all vertices
- Go over each vertex in order π , add it to MIS if not yet dominated

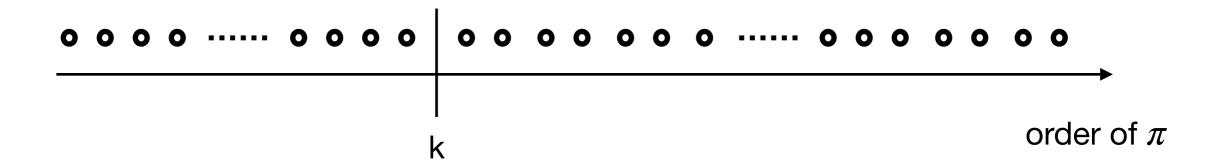


Main Theorem:

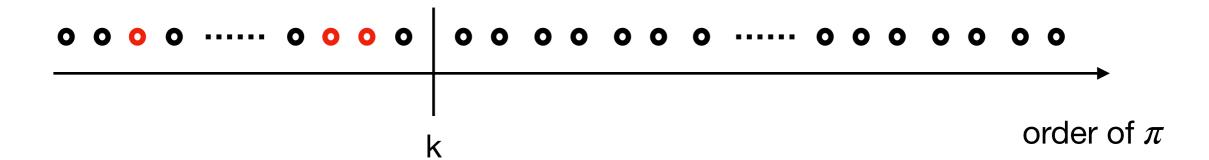
There is an algorithm that maintains a greedy MIS with respect to π in expected time $O(\log^4 n)$, expectation taken over the uniformly random choice of π

Lemma:

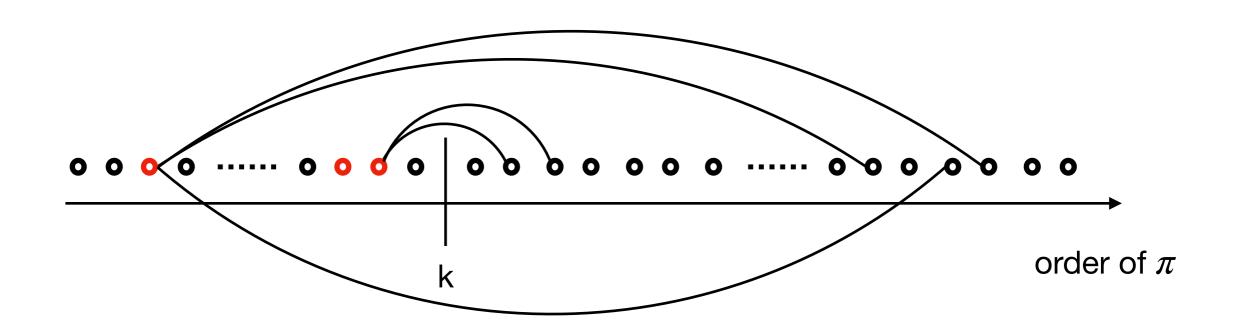
Lemma:



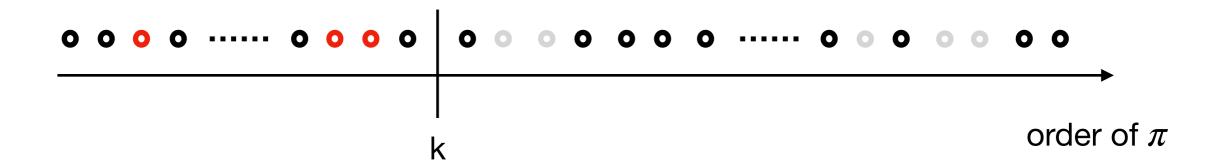
Lemma:



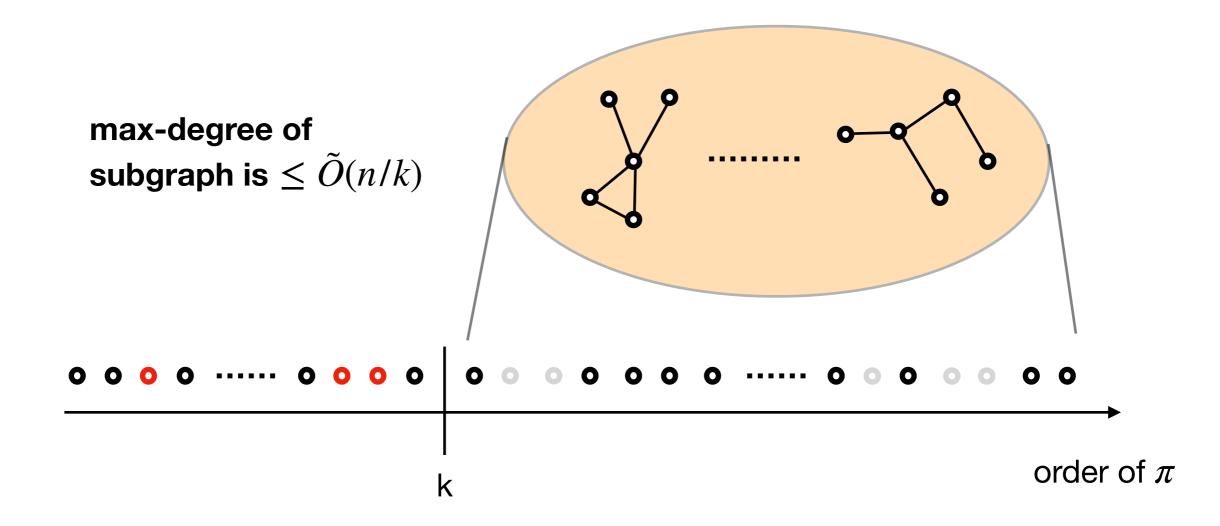
Lemma:



Lemma:

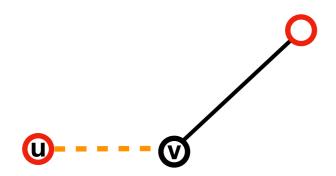


Lemma:

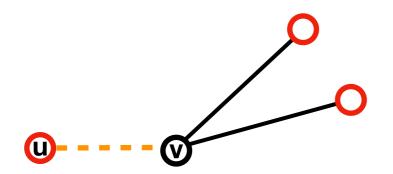


Definition:

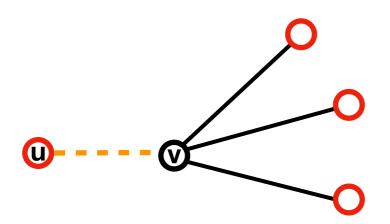
Definition:



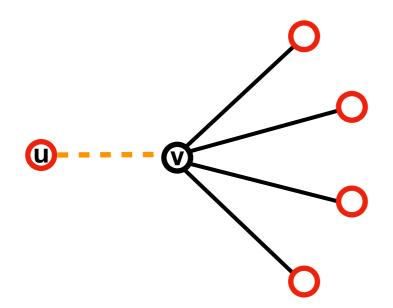
Definition:



Definition:

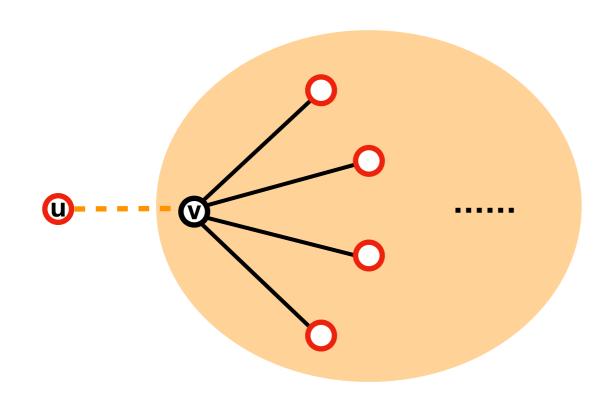


Definition:



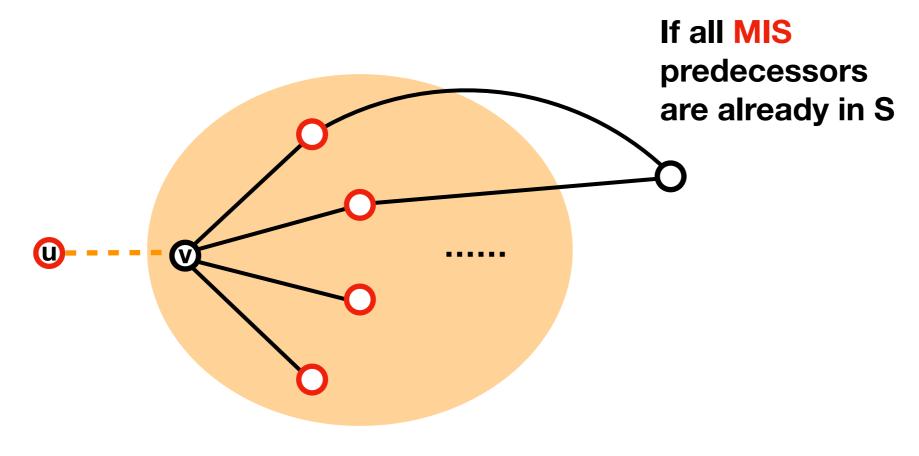
Definition:

Suppose an edge (u, v) is updated. Define the following influenced set S



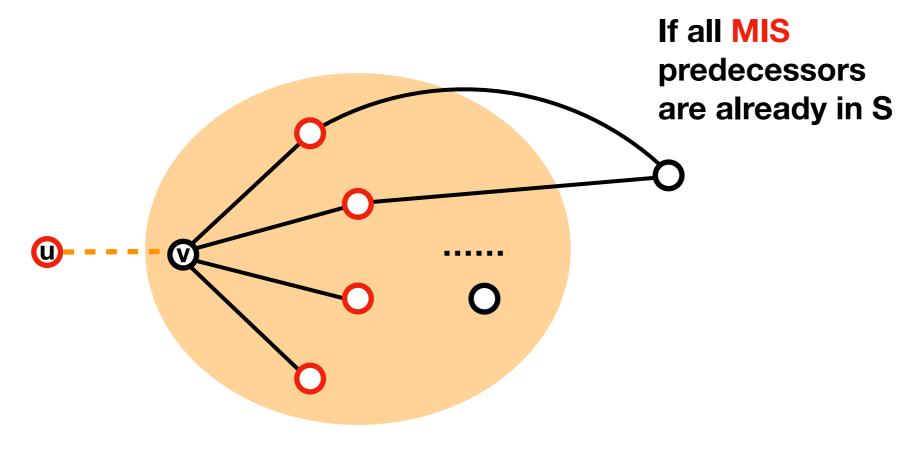
Definition:

Suppose an edge (u, v) is updated. Define the following influenced set S



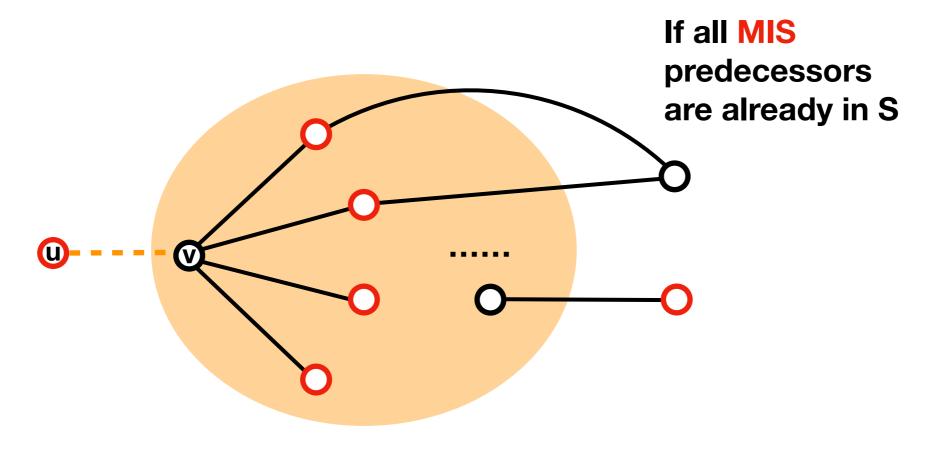
Definition:

Suppose an edge (u, v) is updated. Define the following influenced set S



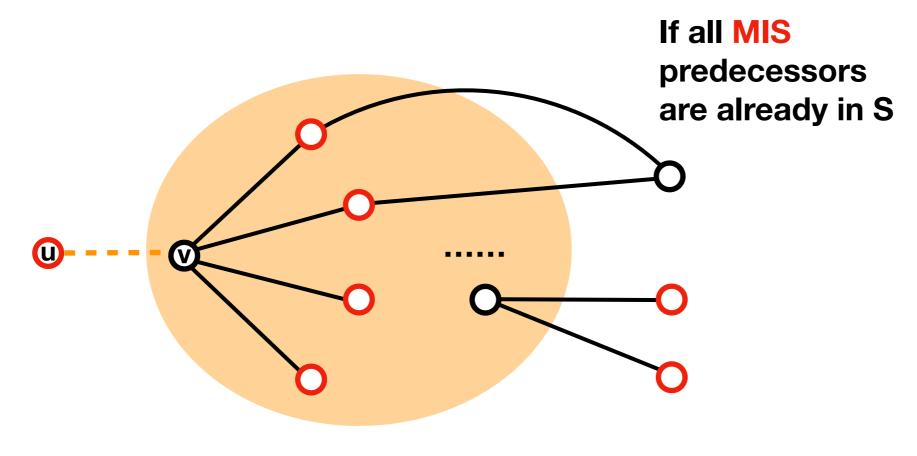
Definition:

Suppose an edge (u, v) is updated. Define the following influenced set S

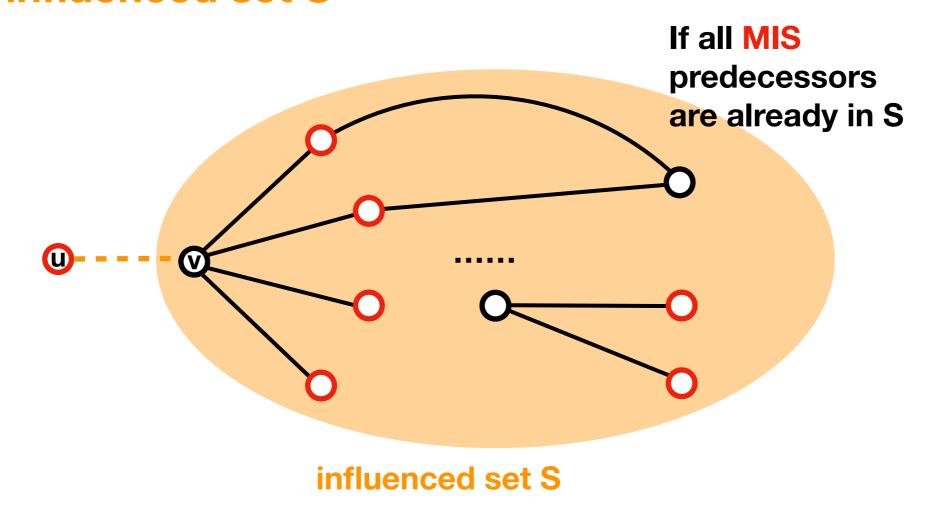


Definition:

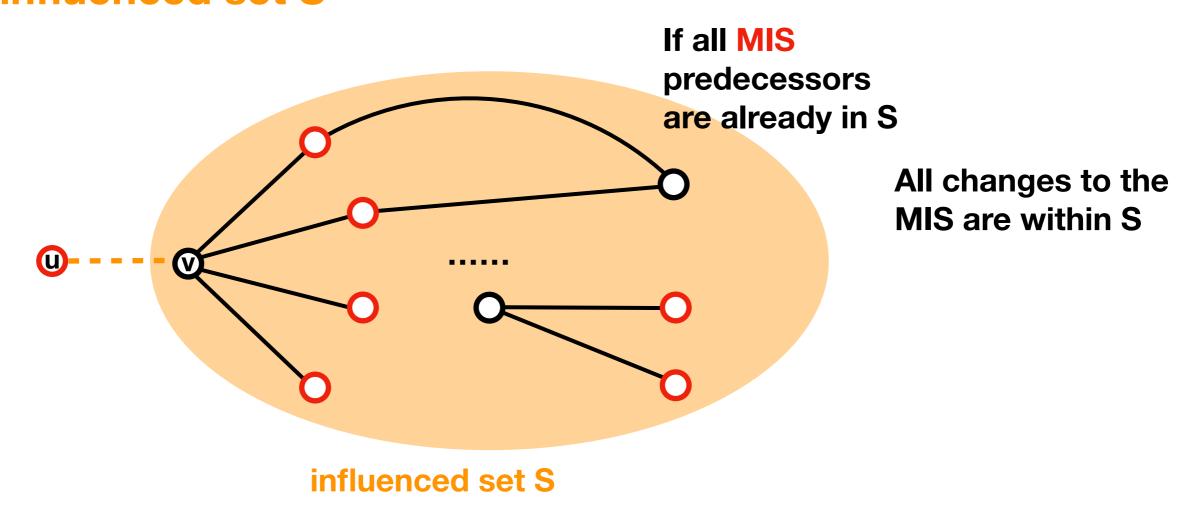
Suppose an edge (u, v) is updated. Define the following influenced set S



Definition:

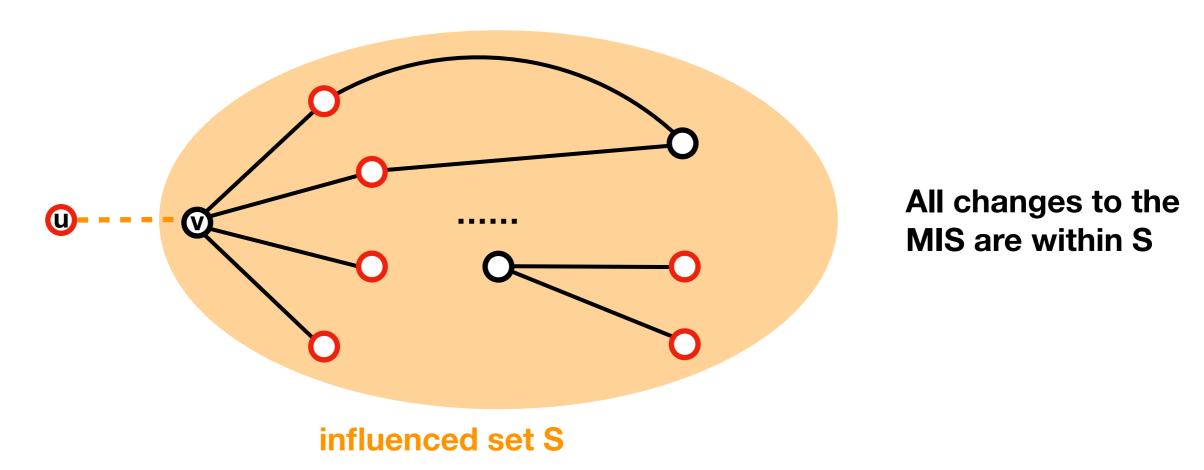


Definition:



Lemma [CHK'16]:

Suppose an edge (u, v) is updated. Then $E_{\pi}[|S|] \leq O(1)$, over uniformly random choices of π



A sketch of algorithm

Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

A sketch of algorithm

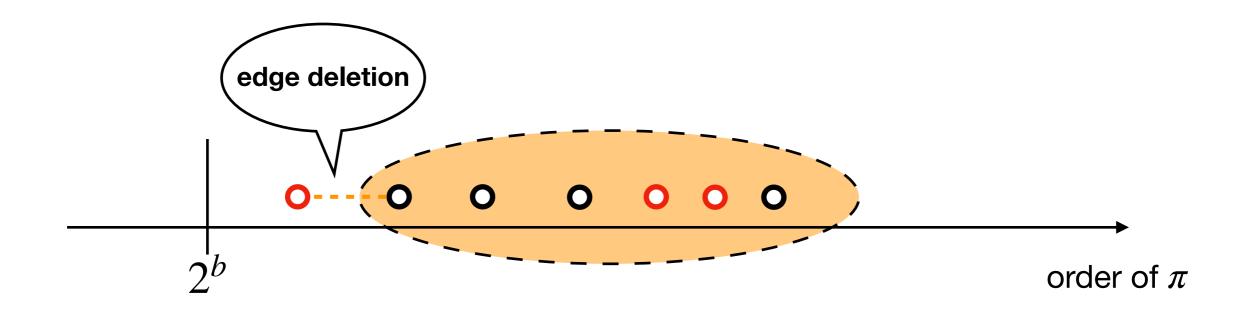
Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

A sketch of algorithm

Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

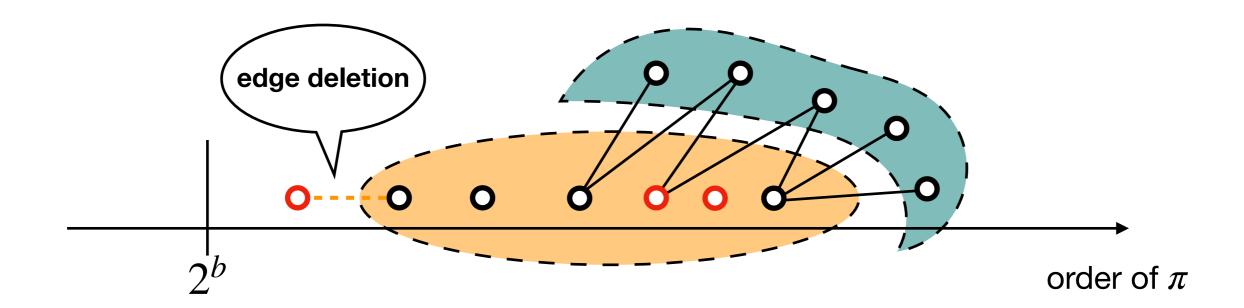


A sketch of algorithm

Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

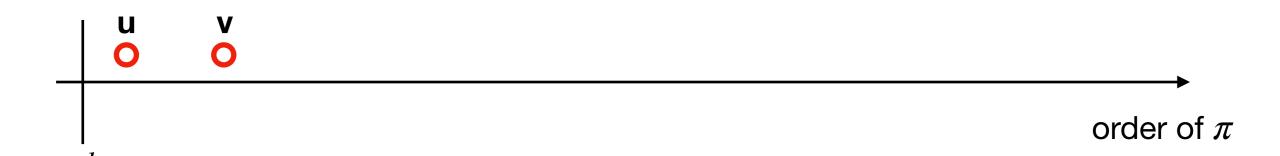
- (1) Compute the influenced set
- (2) Compute the vertex updates to subgraphs



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

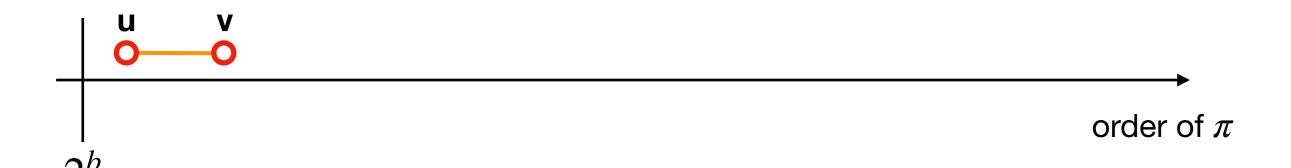
Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

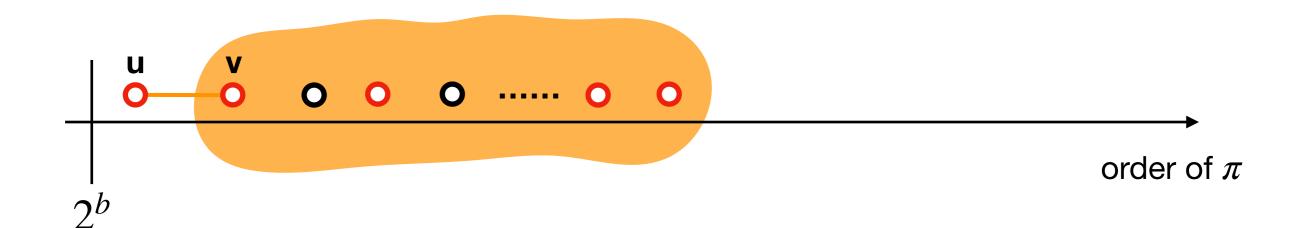
Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

Update algorithm:

Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

Update algorithm:

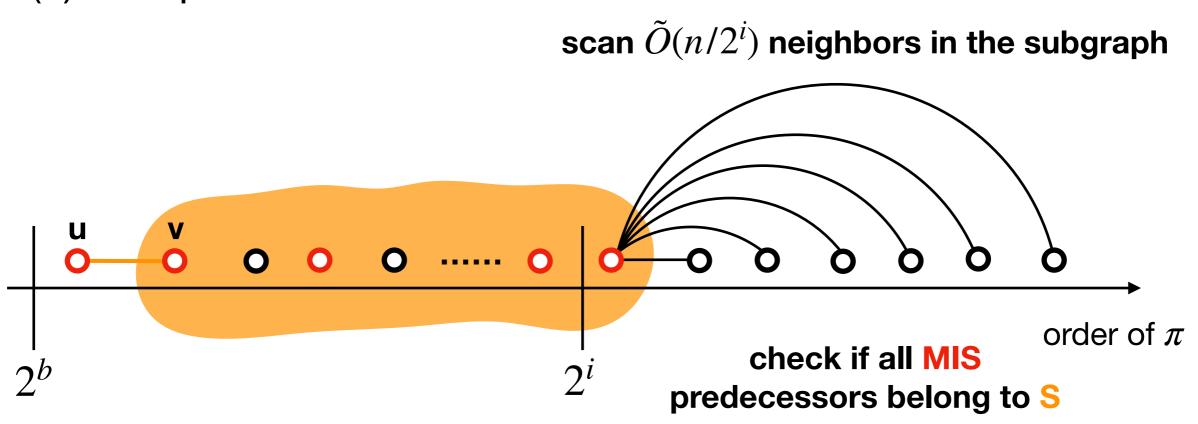
(1) Compute the influenced set S

scan $\tilde{O}(n/2^i)$ neighbors in the subgraph order of π

Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

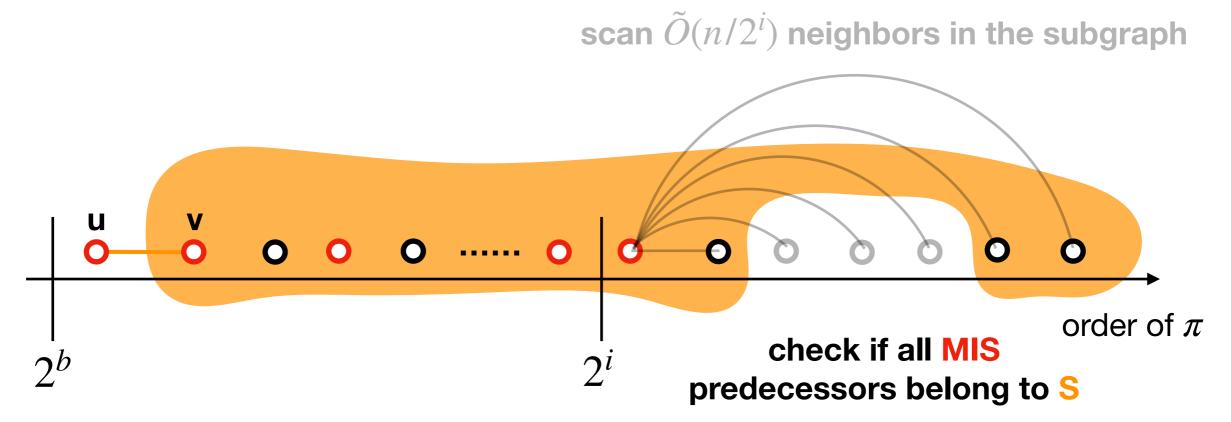
Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

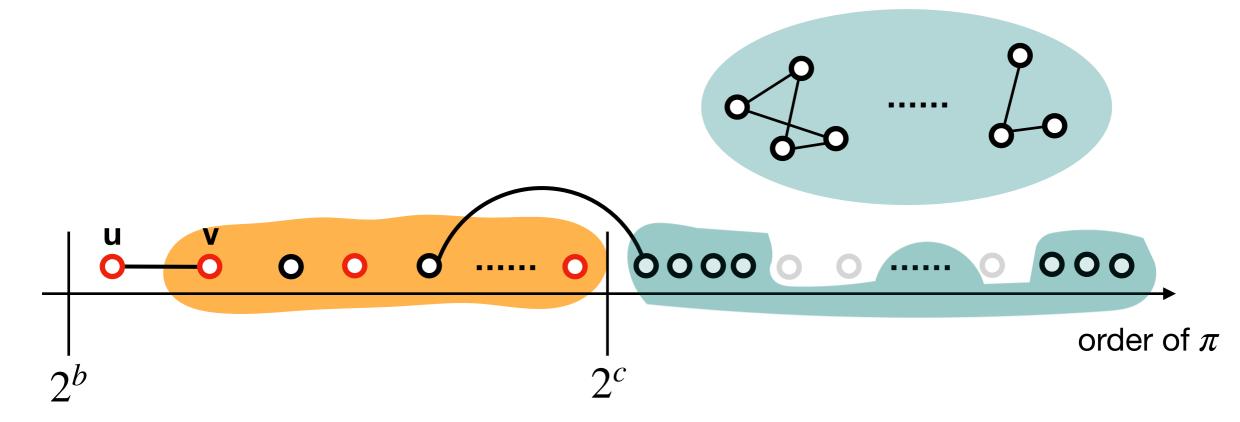
Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

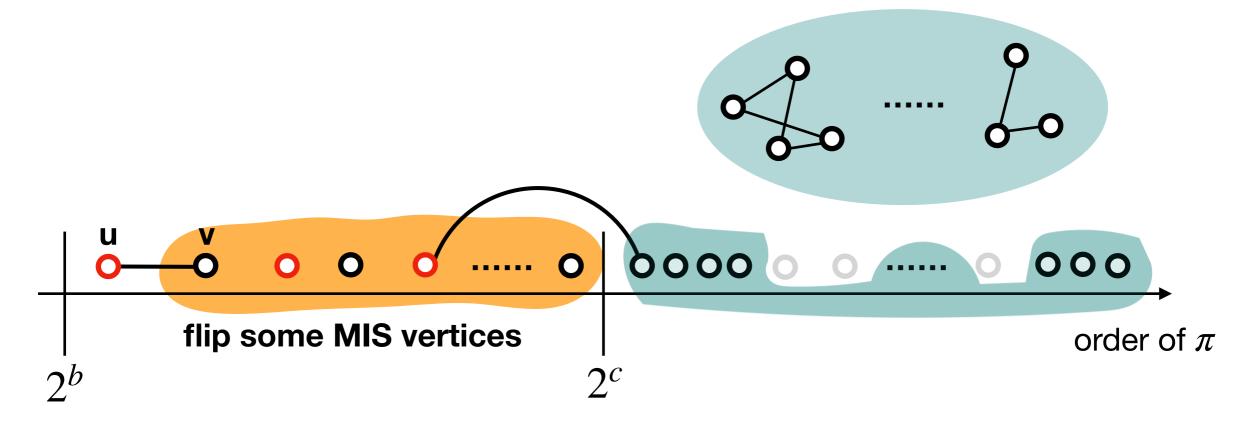
Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

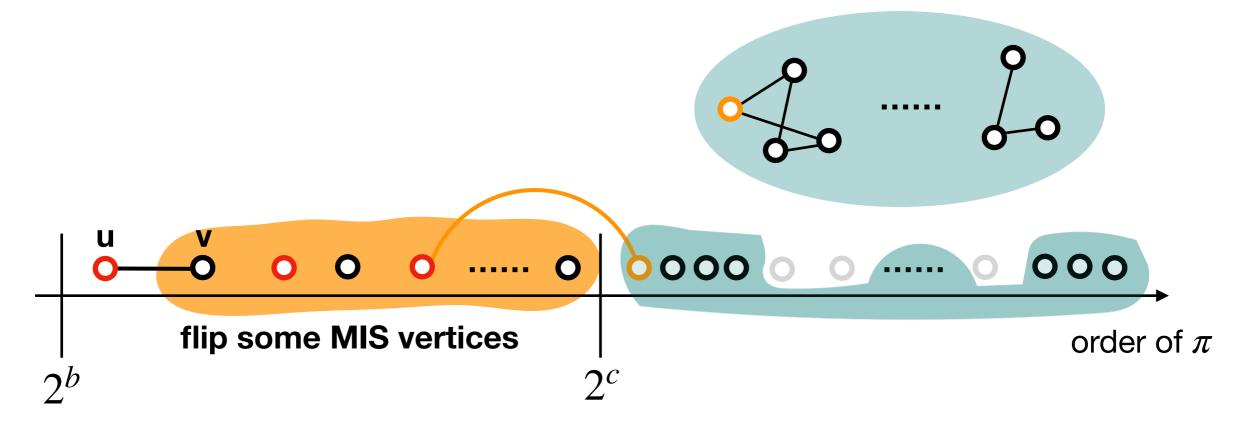
Update algorithm:



Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

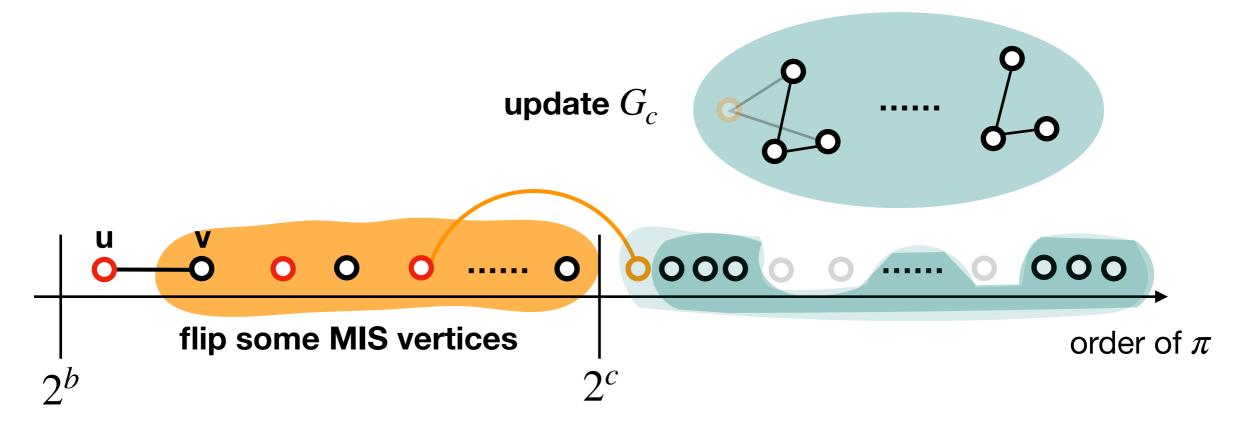
Update algorithm:



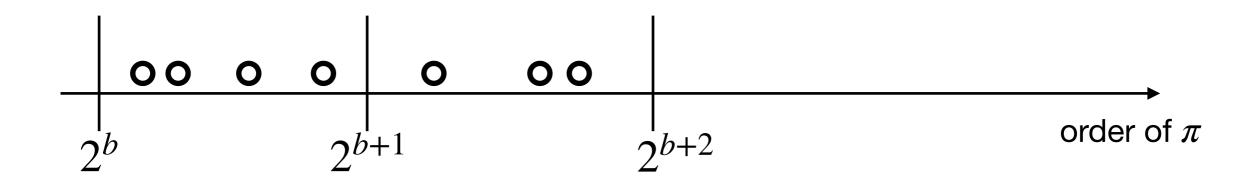
Data structure:

For each 2^b , explicitly maintain the induced subgraph G_b of vertices not dominated by MIS vertices of order $\leq 2^b$

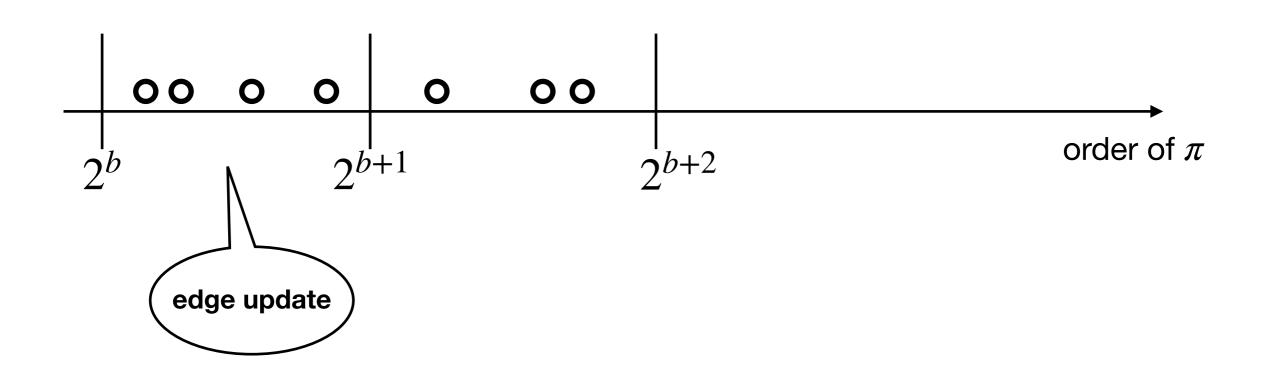
Update algorithm:



Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$



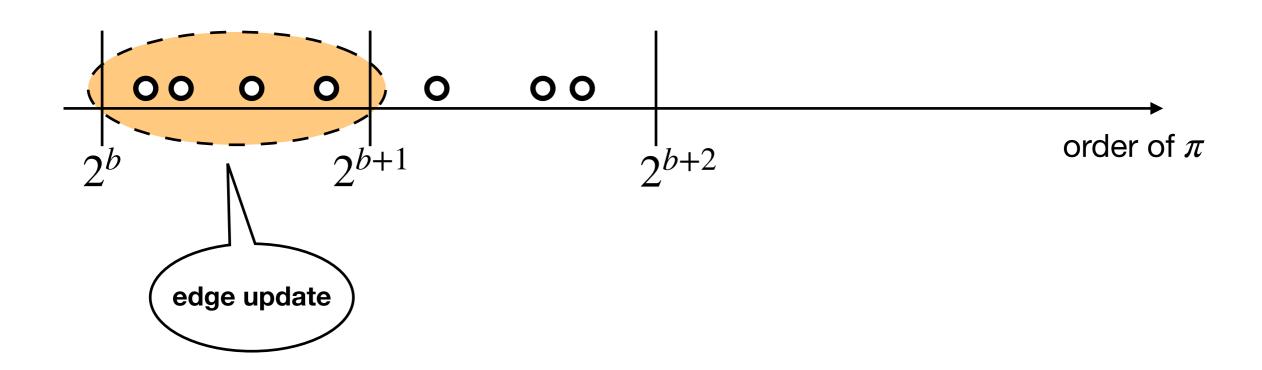
Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$



Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

MIS-flips [CHK'16]

$$\leq \mathrm{E}_{\pi}[|S|] \leq 1$$



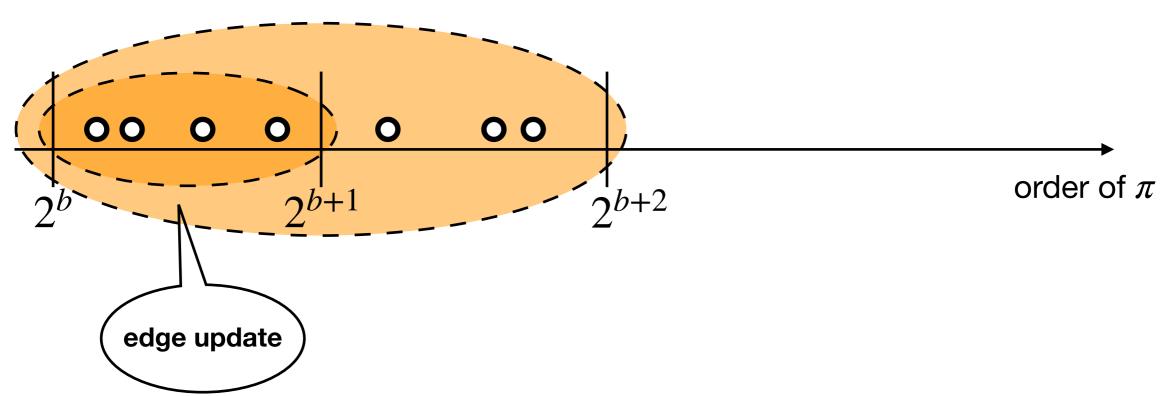
Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

MIS-flips [CHK'16]

$$\leq \operatorname{E}_{\pi}[|S| | \text{first half}] \leq 2 \cdot \operatorname{E}_{\pi}[|S|] \leq 2$$

MIS-flips [CHK'16]

$$\leq \mathrm{E}_{\pi}[|S|] \leq 1$$



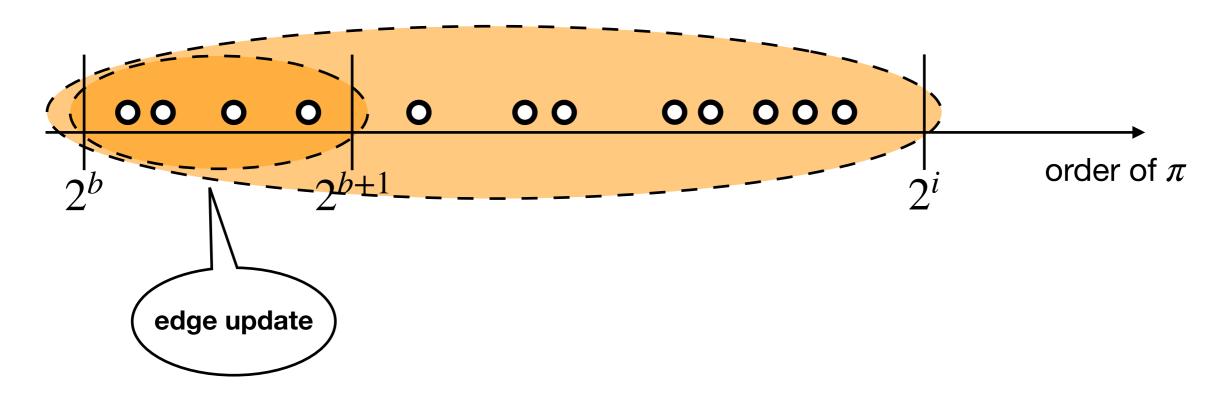
Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

MIS-flips [CHK'16]

$$\leq \mathrm{E}_{\pi}[\,|\,S\,|\,\,|\,\,\mathrm{first}\,\,2^b] \leq 2^{i-b}\cdot \mathrm{E}_{\pi}[\,|\,S\,|\,] \leq 2^{i-b}$$

MIS-flips [CHK'16]

$$\leq \mathrm{E}_{\pi}[|S|] \leq 1$$



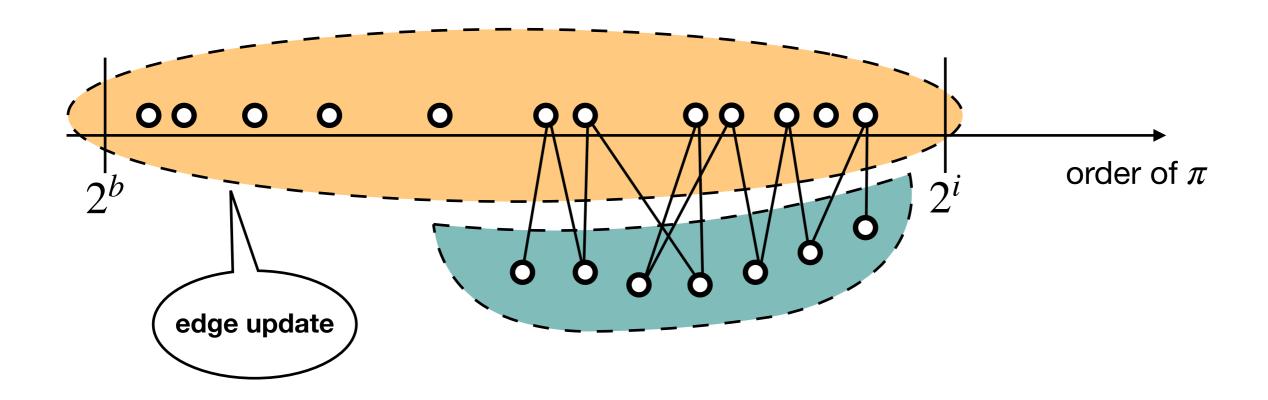
Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

MIS-flips [CHK'16]

$$\leq \mathrm{E}_{\pi}[\,|\,S\,|\,\,|\,\,\mathsf{first}\,\,2^b] \leq 2^{i-b}\cdot \mathrm{E}_{\pi}[\,|\,S\,|\,] \leq 2^{i-b}$$

vertex updates to subgraphs [AOSS'19]

 \leq max-deg of $G_i \cdot E_{\pi}[|S||$ first $2^b] \leq n/2^i \cdot 2^{i-b} = n/2^b$



Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

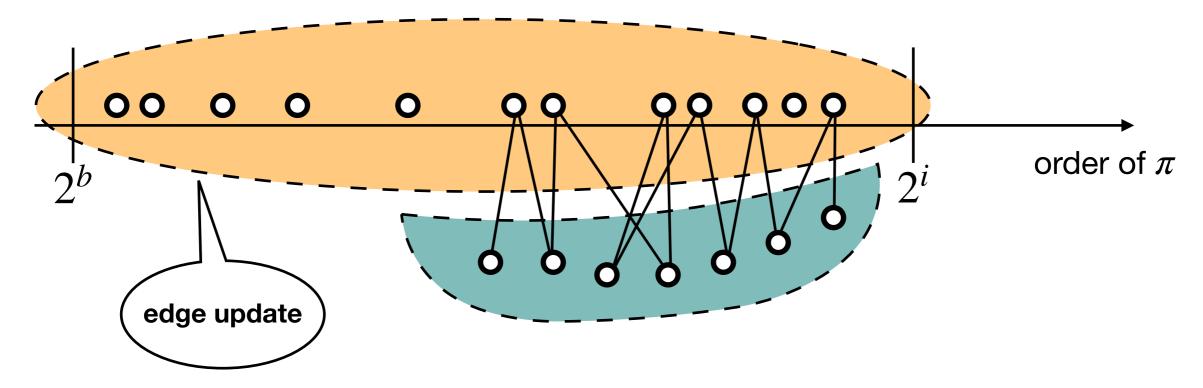
MIS-flips [CHK'16]

 $\leq \mathrm{E}_{\pi}[\,|\,S\,|\,\,|\,\,\mathrm{first}\,\,2^b] \leq 2^{i-b}\cdot \mathrm{E}_{\pi}[\,|\,S\,|\,] \leq 2^{i-b}$

vertex updates to subgraphs [AOSS'19]

 \leq max-deg of $G_i \cdot E_{\pi}[|S||$ first $2^b] \leq n/2^i \cdot 2^{i-b} = n/2^b$

total work \leq (# subgraph changes) · max-deg of $G_b \leq n^2/2^{2b}$



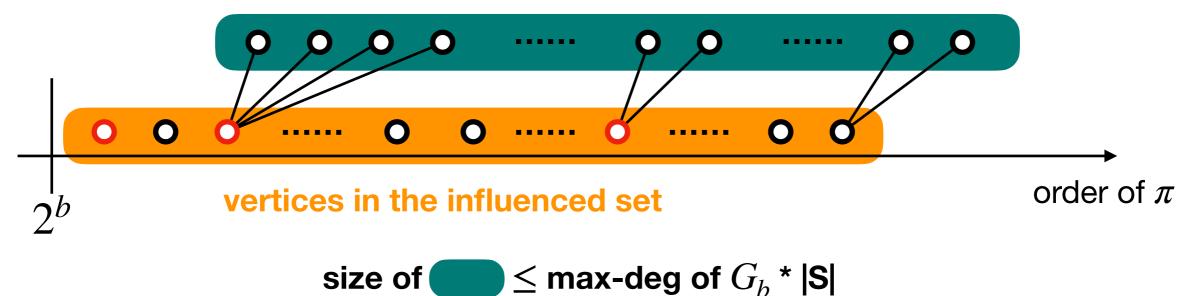
Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

Extending [CHK'16], we could prove that $E_{\pi}[|S|] \le O(n/2^b)$



Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

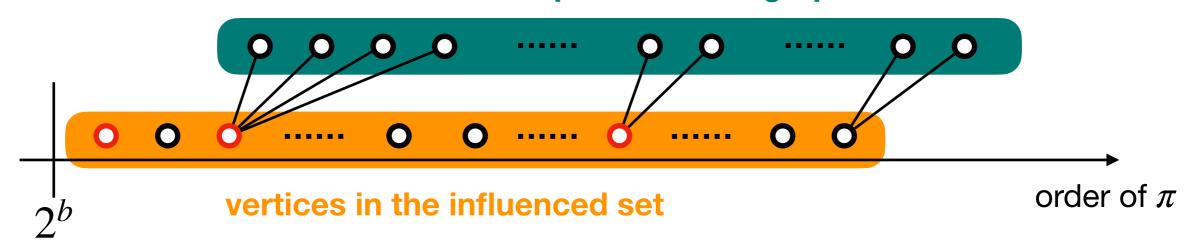
Extending [CHK'16], we could prove that $E_{\pi}[|S|] \le O(n/2^b)$



Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

Extending [CHK'16], we could prove that $E_{\pi}[|S|] \le O(n/2^b)$

vertex updates to subgraphs



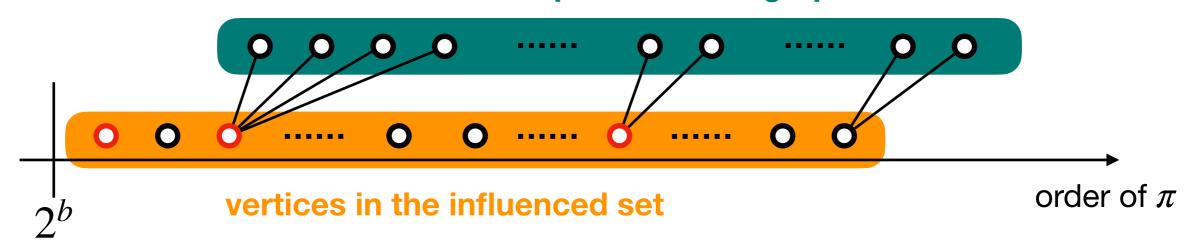
size of \bigcirc \leq max-deg of G_b * |S|

A trivial bound: update time $\leq (\max - \deg \circ G_b)^2 \cdot |S| \leq \tilde{O}(n^3/2^{3b})$

Say $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, want update time $\le \tilde{O}(n^2/2^{2b})$

Extending [CHK'16], we could prove that $E_{\pi}[|S|] \le O(n/2^b)$

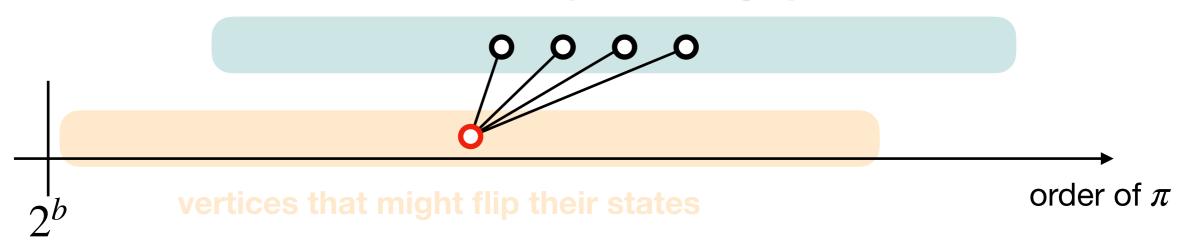
vertex updates to subgraphs

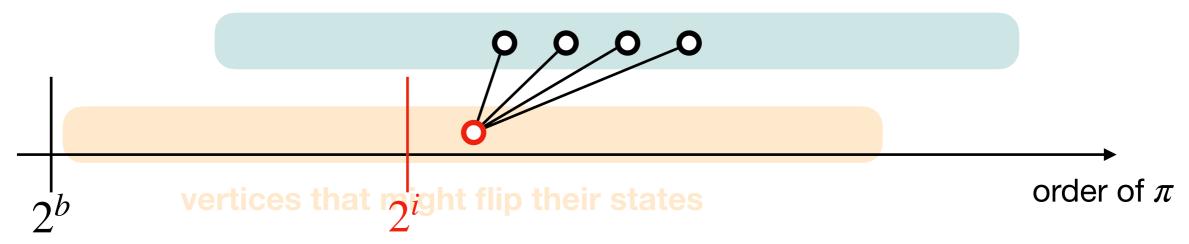


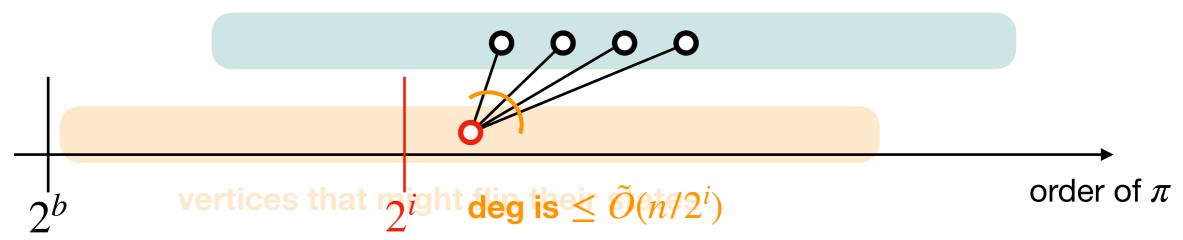
size of \bigcirc \leq max-deg of G_b * |S|

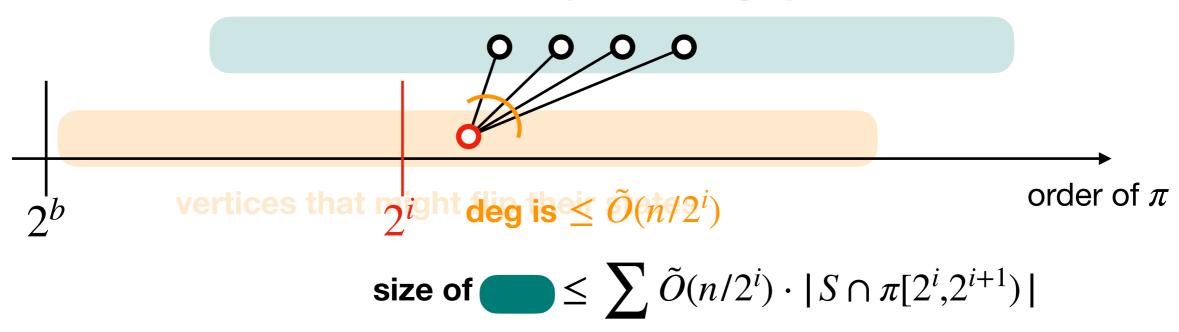
A trivial bound: update time \leq (max-deg of G_b) $^2 \cdot |S| \leq \tilde{O}(n^3/2^{3b})$

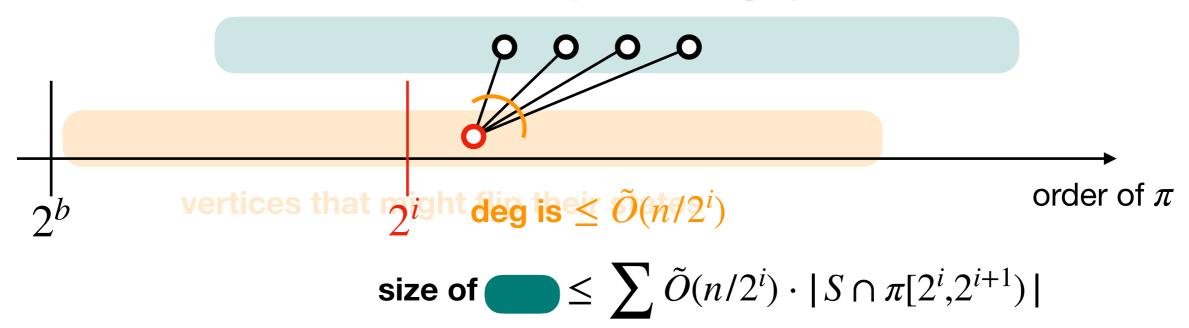
We need $\tilde{O}(n^2/2^{2b})$









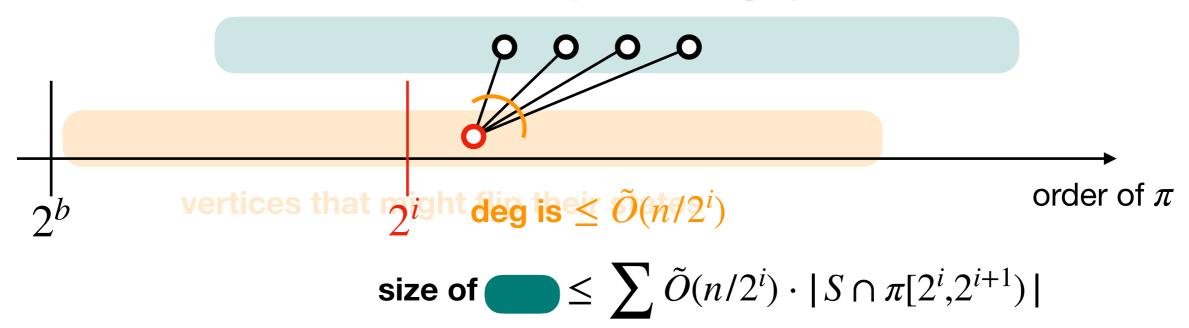


If S is "evenly" distributed on
$$(2^b, n]$$
, say $|S \cap \pi[2^i, 2^{i+1})| \le O(\frac{2^i}{n} \cdot |S|)$

Consequently,
$$\sum n/2^i \le \max \deg * |S|$$

 $O(\log n)$

vertex updates subgraphs



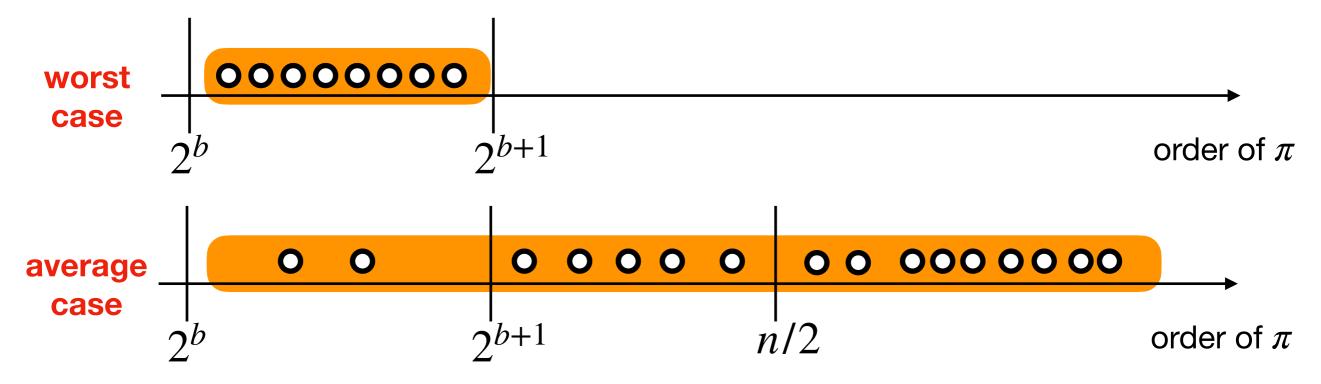
If S is "evenly" distributed on
$$(2^b, n]$$
, say $|S \cap \pi[2^i, 2^{i+1})| \le O(\frac{2^i}{n} \cdot |S|)$

Consequently,
$$\sum n/2^i \le \max \deg * |S|$$

$$O(\log n)$$

Total update time becomes $\tilde{O}(n^2/2^{2b})$

Analyze the how S is distributed on $(2^b, n]$



Lemma:

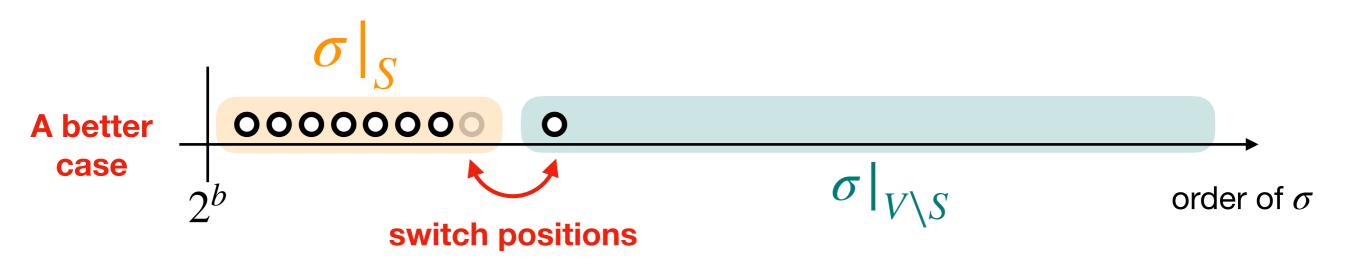
Conditioning on $2^b < \pi(u) < \pi(v) \le 2^{b+1}$, the set S is "evenly" distributed on interval $(\pi(v), n]$

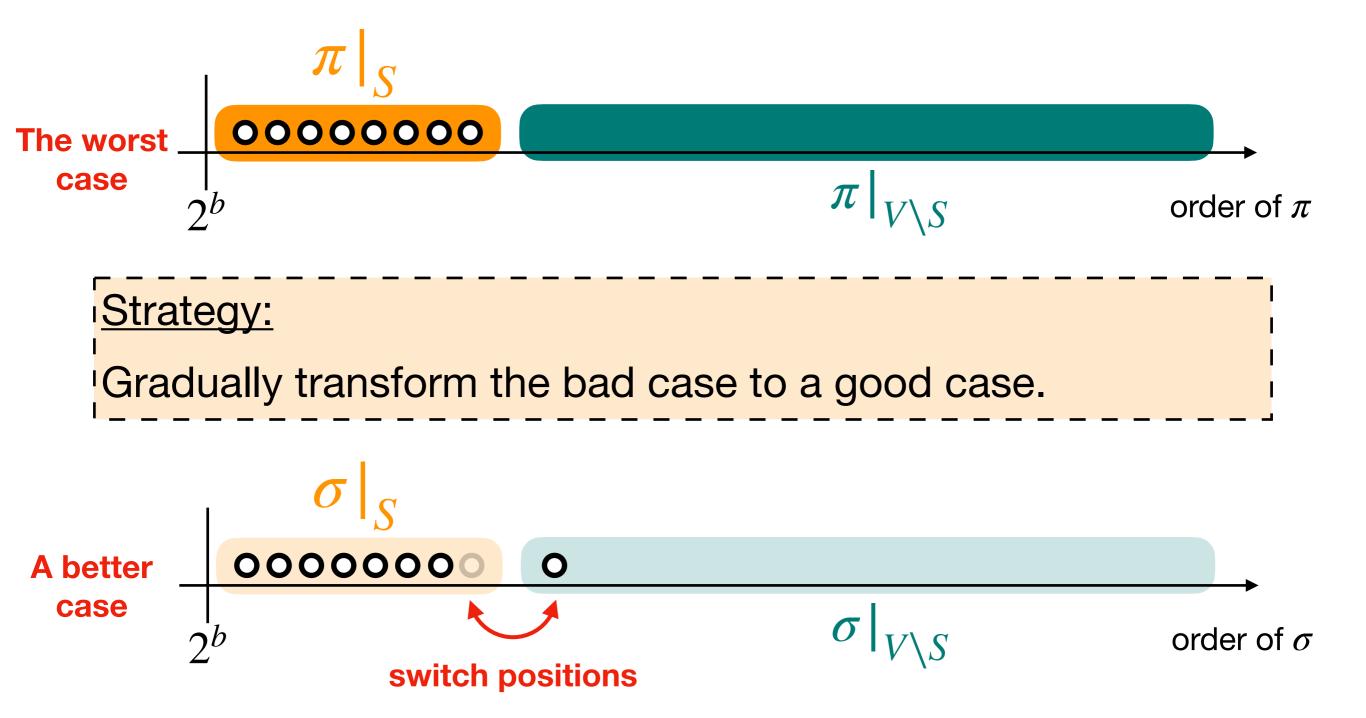
Strategy:

Gradually transform the bad case to a good case.

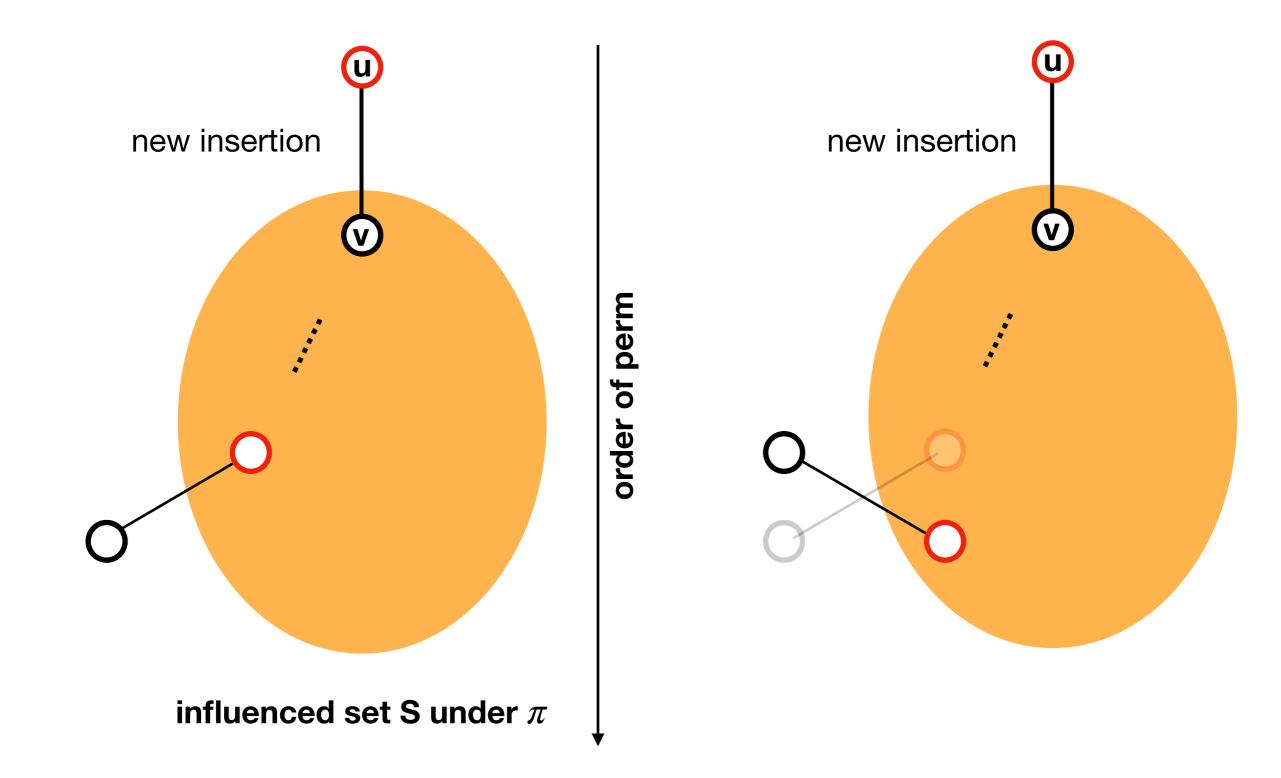
Strategy:

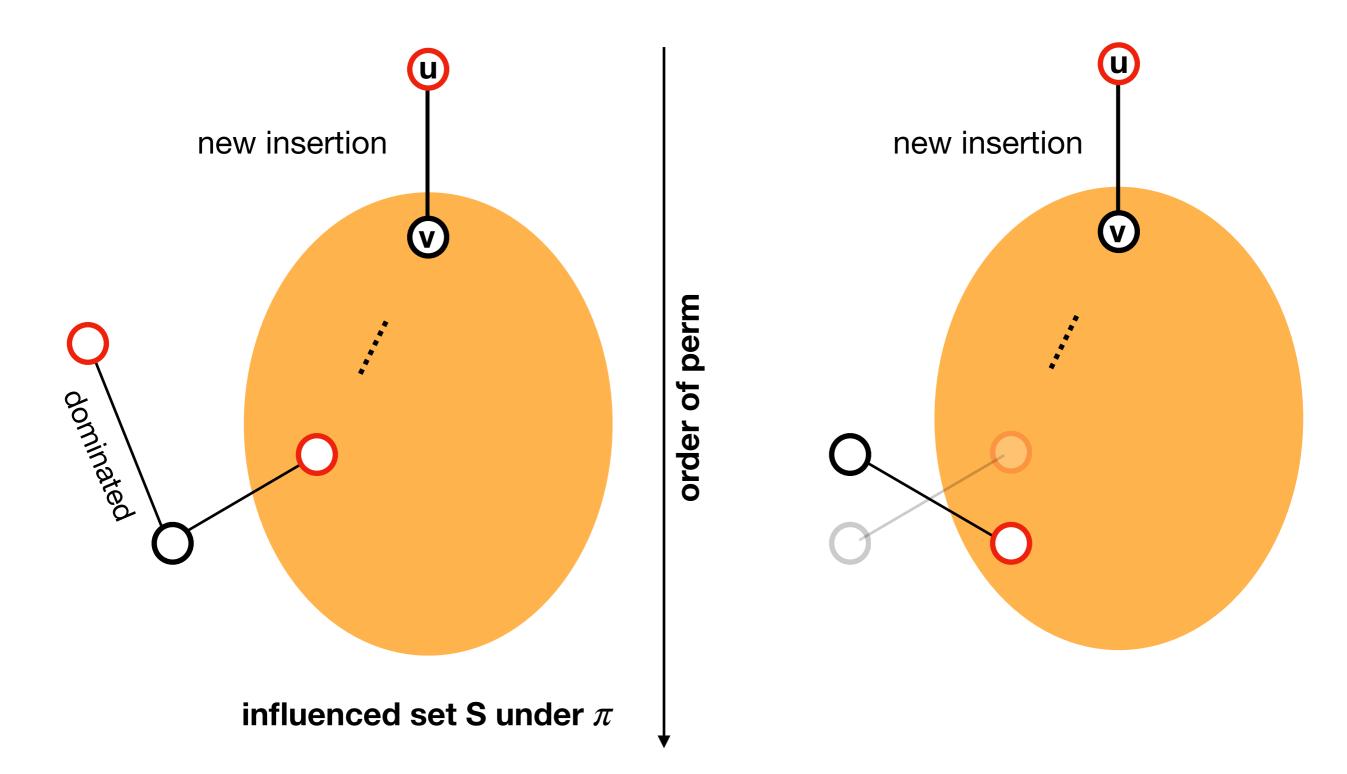
Gradually transform the bad case to a good case.

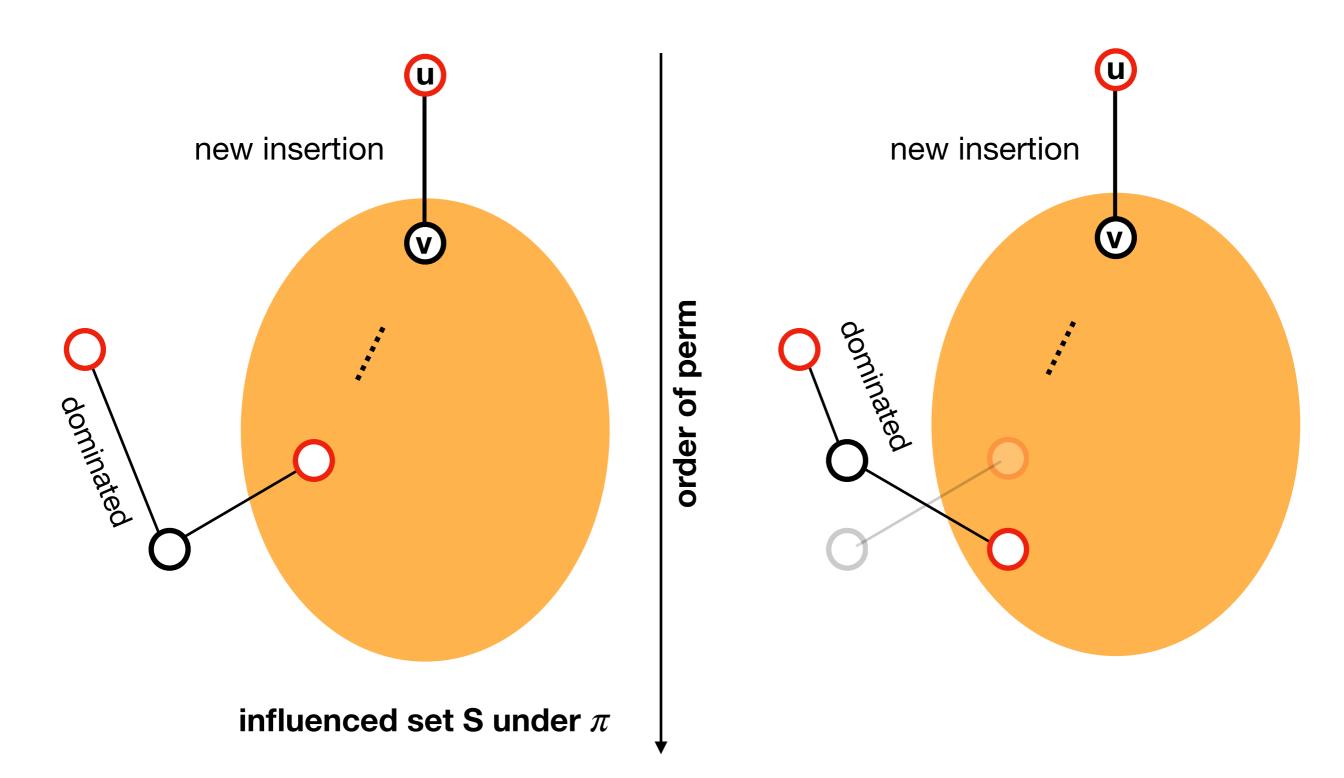


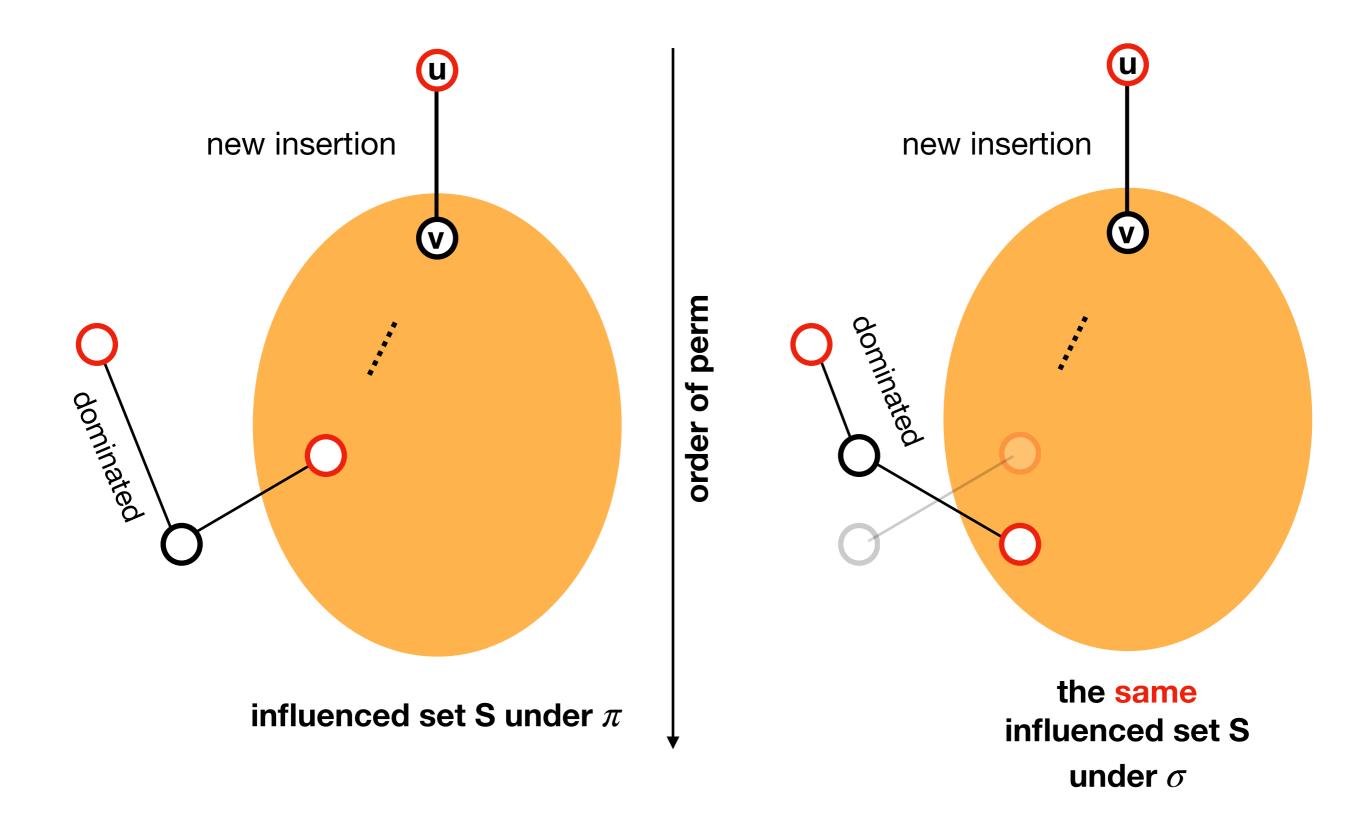


Prove S is still the influenced set under the new permutation σ









Thanks