# Faster Min-Plus Product for Monotone Instances 

Shucheng Chi, Ran Duan, Tianle Xie, Tianyi Zhang ${ }^{1}$

Tsinghua University

Tel Aviv University

1. The fourth author is supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 803118 UncertainENV)

## Structured Min-Plus Problems

## Min-Plus Product

- Given integral $n \times n$ matrices $A$ and $B$, compute (min,+ ) product:

$$
(A \star B)_{i, j}=\min _{k}\left\{A_{i, k}+B_{k, j}\right\}
$$

- Min-Plus Product is equivalent to All-Pairs Shortest Paths [FM, 1971]
- Fastest runtime for (min , + ) or APSP: $n^{3} / 2^{\Omega(\sqrt{\log n})}$ [Williams, 2018]
- Hardness conjecture: $(\min ,+)$ product requires $n^{3-o(1)}$ time


## Structured Min-Plus Product

- If $A$ and $B$ have bounded entries $\in\{-W, \cdots, W, \infty\}$ then $A \star B$ can be computed in $\tilde{O}\left(W n^{\omega}\right)$ time [Alon et al., 1997]
- Inputs matrices with more structures:
- Bounded-difference matrices
[Bringmann et al., 2016]
- Monotone matrices
[Vassilevska Williams and Xu, 2020]


## Bounded-Difference Min-Plus Product

- Matrix $X$ has bounded-difference if:

$$
\left|X_{i, j}-X_{i, j+1}\right|,\left|X_{i, j}-X_{i+1, j}\right| \leq 1
$$

- Want to compute $A \star B$ when $A$ and $B$ both have bounded-difference
- Many applications in string problems:
- Language edit distance, RNA folding [Bringmann et al., 2016]
- Tree edit distance [Mao, 2021]
- Dyck edit distance [Fried et al., 2022]


## Monotone Min-Plus Product

- Matrix $X$ is monotone if:

$$
0 \leq X_{i, j} \leq X_{i, j+1} \leq O(n)
$$

- Want to compute $A \star B$ when $B$ is monotone
- Generalization of bounded-difference min-plus product [GPWX, 2021]
- Further application in graph problems:
- Single-source replacement paths with negative weights [GPWX, 2021]


## Min-Plus Convolution

- Given integral arrays $A$ and $B$ of length $n$, compute ( $\min ,+$ ) convolution:

$$
(A \diamond B)_{k}=\min _{i}\left\{A_{k-i}+B_{i}\right\}
$$

- Fastest runtime for (min , + ) conv: $n^{2} / 2^{\Omega(\sqrt{\log n})}$ [Williams, 2018]
- Hardness conjecture: (min,+ ) conv requires $n^{2-o(1)}$ time
- Stronger than APSP or 3SUM conjecture


## Monotone Min-Plus Convolution

- Array $X$ is monotone if:

$$
0 \leq X_{i} \leq X_{i+1} \leq O(n)
$$

- Want to compute $A \diamond B$ when $A$ and $B$ both are monotone
- Applications:
- Histogram indexing, necklace alignment [BCD+, 2006] [ACLL, 2014]


## Runtime for Structured Min-Plus Instances

| reference | bounded-difference <br> min-plus product | monotone <br> min-plus product | monotone <br> min-plus convolution |
| :---: | :---: | :---: | :---: |
| Chan and Lewenstein <br> 2015 | $n^{3}$ | $n^{3}$ | $n^{2}$ |
| Bringmann et al. <br> 2016 | $n^{2.824}$ |  | $n^{1.859}$ |
| V. Williams and Xu <br> 2020 |  | $n^{(15+\omega) / 6}$ |  |
| Gu et al. <br> 2021 | $n^{2+\omega / 3}$ | $n^{(12+\omega) / 5}$ |  |
| Chi, Duan and Xie <br> 2022 | $n^{(3+\omega) / 2}$ |  |  |
| new |  |  |  |

FMM exponent $\omega<2.373$ [Alman and Vassilevska Williams, 2021]

## Runtime for Structured Min-Plus Instances

| reference | bounded-difference <br> min-plus product | monotone <br> min-plus product | monotone <br> min-plus convolution |
| :---: | :---: | :---: | :---: |
| Chan and Lewenstein <br> 2015 | $n^{3}$ | $n^{3}$ | $n^{2}$ |
| Bringmann et al. <br> 2016 | $n^{2.824}$ |  | $n^{1.859}$ |
| V. Williams and Xu <br> 2020 |  | $n^{(15+\omega) / 6}$ |  |
| Gu et al. <br> 2021 | $n^{2+\omega / 3}$ | $n^{(12+\omega) / 5}$ |  |
| Chi, Duan and Xie <br> 2022 | $n^{(3+\omega) / 2}$ |  |  |
| new |  | $n^{1.5}$ |  |

FMM exponent $\omega<2.373$ [Alman and Vassilevska Williams, 2021]

# Monotone Min-Plus Product with runtime $n^{2+\omega / 3}$ 

## Approximate Min-Plus

- For convenience, assume $\omega=2$ for the rest
- Estimate $C=A \star B$ up to sub-linear additive errors A common step in previous works
- Rounding: $\tilde{A}_{i, j}=\left\lfloor A_{i, j} / n^{1 / 3}\right\rfloor, \tilde{B}_{i, j}=\left\lfloor B_{i, j} / n^{1 / 3}\right\rfloor$ Compute: $\tilde{C}=\tilde{A} \star \tilde{B}$
- Approximation: $\left|\tilde{C}_{i, j}-C_{i, j} / n^{1 / 3}\right|=O(1)$ Runtime: $\tilde{O}\left(n^{2+2 / 3}\right)$


## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

$$
\begin{aligned}
& A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}+\hat{A}_{i, k} \\
& B_{k, j}=n^{1 / 3} \tilde{B}_{k, j}+\hat{B}_{k, j} \\
& C_{i, j}=n^{1 / 3} \tilde{C}_{i, j}+?
\end{aligned}
$$

## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

$$
\begin{aligned}
& A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}+\hat{A}_{i, k} \\
& B_{k, j}=n^{1 / 3} \tilde{B}_{k, j}+\hat{B}_{k, j} \\
& C_{i, j}=n^{1 / 3} \tilde{C}_{i, j}+?
\end{aligned}
$$

[^0]
## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

quotients remainder

Only focus on $k \in[n]$ such that:

$$
\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right|=O(1)
$$

and then minimize:

$$
\hat{A}_{i, k}+\hat{B}_{k, j}
$$

## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

$$
\begin{aligned}
& A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}+\begin{array}{l}
\hat{A}_{i, k} \\
B_{k, j}=n^{1 / 3} \tilde{B}_{k, j} \\
\hat{B}_{k, j} \\
C_{i, j} 1 / 3 \\
n_{i, j} \\
?
\end{array}+\underbrace{?}_{\text {quotients }} \\
& \text { remainder }
\end{aligned}
$$

## Using polynomials:

$$
\begin{gathered}
A_{i, k}(x, y)=x^{\hat{A}_{i, k}} \cdot y^{\tilde{A}_{i, k}} \\
B_{k, j}(x, y)=x^{\hat{B}_{k, j}} \cdot y^{\tilde{B}_{k, j}} \\
C_{i, j}(x, y)=\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y)
\end{gathered}
$$

## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

Using polynomials:

$$
\begin{gathered}
A_{i, k}(x, y)=x^{\hat{A}_{i, k}} \cdot y^{\tilde{A}_{i, k}} \\
B_{k, j}(x, y)=x^{\hat{B}_{k, j}} \cdot y^{\tilde{B}_{k, j}} \\
C_{i, j}(x, y)=\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y)
\end{gathered}
$$



$$
\begin{aligned}
C_{i, j}(x, y) & =\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y) \\
& =y^{\tilde{c}_{j,}} F_{0}(x)+y^{\tilde{c}_{j,}+1} F_{1}(x)+y^{\tilde{c}_{i, j}+2} F_{2}(x)+\cdots \cdots
\end{aligned}
$$

## Quotient \& Remainder

## Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

Only focus on $k \in[n]$ such that:

$$
\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right|=O(1)
$$

and then minimize:

$$
\hat{A}_{i, k}+\hat{B}_{k, j}
$$




$$
\begin{aligned}
C_{i, j}(x, y) & =\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y) \\
& =y^{\tilde{c}_{i, j}} F_{0}(x)+y^{\tilde{c}_{i, j}+1} F_{1}(x)+y^{\tilde{c}_{i, j}+2} F_{2}(x)+\cdots \cdots
\end{aligned}
$$

## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

Only focus on $k \in[n]$ such that:

$$
\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right|=O(1)
$$

and then minimize:

$$
\hat{A}_{i, k}+\hat{B}_{k, j}
$$



$$
\begin{aligned}
C_{i, j}(x, y) & =\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y) \\
& =y^{\tilde{C}_{i, j}} F_{0}(x)+y^{\tilde{C}_{i, j}+1} F_{1}(x)+\tilde{y}_{i, j, 1}+(n)
\end{aligned}
$$

## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

Only focus on $k \in[n]$ such that:

$$
\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right|=O(1)
$$

and then minimize:

$$
\hat{A}_{i, k}+\hat{B}_{k, j}
$$



$$
\begin{aligned}
C_{i, j}(x, y) & =\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k j,}\right)(x, y) \\
& =y^{c_{i j} F_{0}(x)+y^{c_{i, j}+1} F_{1}(x)+} \\
C_{i, j}= & n^{1 / 3}\left(\tilde{C}_{i, j}+b\right)+\text { min-deg of } F_{b}(x)
\end{aligned}
$$

## Quotient \& Remainder

Basic idea: match quotients with $\tilde{C}$, then find minimum remainders

## Using polynomials:

$$
\begin{gathered}
A_{i, k}(x, y)=x^{\hat{A}_{i, k}} \cdot y^{\tilde{A}_{i, k}} \\
B_{k, j}(x, y)=x^{\hat{B}_{k, j}} \cdot y^{\tilde{B}_{k, j}} \\
C_{i, j}(x, y)=\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y)
\end{gathered}
$$

## Runtime? No help

Multiplying polynomial matrices

$$
C(x, y)=A(x, y) \cdot B(x, y)
$$

takes time

$$
n^{\omega=2} \cdot \operatorname{deg}_{x} \cdot \operatorname{deg}_{y}=n^{3}
$$

## Modulo on y-degrees

Key idea: apply modulo-p operations on degrees of $y$-variables

## Using polynomials:

$$
\begin{gathered}
A_{i, k}(x, y)=x^{\hat{A}_{i, k}} \cdot y^{\tilde{A}_{i, k}} \\
B_{k, j}(x, y)=x^{\hat{B}_{k, j}} \cdot y^{\tilde{B}_{k, j}} \\
C_{i, j}(x, y)=\sum_{k=1}^{n}\left(A_{i, k} \cdot B_{k, j}\right)(x, y)
\end{gathered}
$$

## Degree reduction by modulo:

$$
\begin{gathered}
A_{i, k}^{p}(x, y)=x^{\hat{A}_{i, k}} \cdot y^{\tilde{A}_{i, k}} \bmod p \\
B_{k, j}^{p}(x, y)=x^{\hat{B}_{k, j}} \cdot y^{\tilde{B}_{k, j}} \bmod p \\
C_{i, j}^{p}(x, y)=\sum_{k=1}^{n}\left(A_{i, k}^{p} \cdot B_{k, j}^{p}\right)(x, y)
\end{gathered}
$$

## Modulo on y-degrees

Key idea: apply modulo-p operations on degrees of $y$-variables

Degree reduction by modulo:

$$
\begin{gathered}
A_{i, k}^{p}(x, y)=x^{\hat{A}_{i, k}} \cdot y^{\tilde{A}_{i, k}} \bmod p \\
B_{k, j}^{p}(x, y)=x^{\hat{B}_{k, j}} \cdot y^{\tilde{B}_{k, j}} \bmod p \\
C_{i, j}^{p}(x, y)=\sum_{k=1}^{n}\left(A_{i, k}^{p} \cdot B_{k, j}^{p}\right)(x, y)
\end{gathered}
$$

## Runtime?

Multiplying polynomial matrices

$$
C^{p}(x, y)=A^{p}(x, y) \cdot B^{p}(x, y)
$$

takes time

$$
n^{\omega=2} \cdot \operatorname{deg}_{x} \cdot p=n^{2+1 / 3} p
$$

## Modulo on y-degrees

Key idea: apply modulo-p operations on degrees of $y$-variables
Only focus on $k \in[n]$ s.t. $\quad\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right|=O(1)$
$C_{i, j}(x, y)=y^{\tilde{c}_{i, j}} F_{0}(x)+y^{\tilde{c}_{i, j}+1} F_{1}(x)+y^{\tilde{c}_{i, j}+2} F_{2}(x)+\cdots+y^{\tilde{c}_{i, j}+p} F_{p}(x)+y^{\tilde{c}_{i, j}+p+1} F_{p}(x)+\cdots \cdots$.

Taking modulo-p adds many erroneous x -monomials
$\left.C_{i, j}^{p}(x, y)=y^{\tilde{c}_{i, j} \bmod p}{ }_{[F}(x)+F_{p}(x)\right]+y^{\tilde{c}_{i, j}+1 \bmod p}\left[F_{1}(x)+F_{1+p}(x)\right]+y^{\tilde{c}_{i, j}+2 \bmod p} F_{2}(x)+\cdots \ldots$
In other words, many x-monomials are hashed to the same $y$-bucket

## Bounding total errors

## The number of erroneous x-terms:

If $p \in\left[n^{1 / 3}, 2 n^{1 / 3}\right]$ is a random prime, then total \#errors $=\tilde{O}\left(n^{3-1 / 3}\right)$

## Proof:

- Fix any $i, j, k \in[n]$ s.t. $\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$

What is the probability that $\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j} \equiv O(1) \bmod p$

- As $p \in\left[n^{1 / 3}, 2 n^{1 / 3}\right]$ is random, the probability is $\tilde{O}\left(n^{-1 / 3}\right)$


## Finding all error monomials

| Goal: |
| :--- |
| Fix a prime |
| $p \in\left[n^{1 / 3}, 2 n^{1 / 3}\right]$, find all |
| $(i, j, k) \in[n]^{3}$ such that: |
| $\left\|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right\| \neq O(1)$ |
| $\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j} \equiv O(1) \bmod p$ |



## Finding all error monomials

## Goal:

Fix a prime $p \in\left[n^{1 / 3}, 2 n^{1 / 3}\right]$, find all $(i, j, k) \in[n]^{3}$ such that:
$\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$
$\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j} \equiv O(1) \bmod p$


Divide each row into intervals
Entries in the each interval are the same

## Finding all error monomials

## Goal:

Fix a prime $p \in\left[n^{1 / 3}, 2 n^{1 / 3}\right]$, find all $(i, j, k) \in[n]^{3}$ such that:
$\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$
$\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j} \equiv O(1) \bmod p$


Divide each row into intervals
Entries in the each interval are the same

Since $\tilde{B}$ is monotone, there are at most $n^{2 / 3}$ intervals for each row

## Finding all error monomials

## Goal:

Fix a prime $p \in\left[n^{1 / 3}, 2 n^{1 / 3}\right]$, find all $(i, j, k) \in[n]^{3}$ such that:
$\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$
$\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j} \equiv O(1) \bmod p$


Algorithm:

- Fix any $i, k \in[n]$ and any interval of $k$-th row of $B$
- List all $j$ in the interval such that

$$
\tilde{C}_{i, j} \neq \tilde{A}_{i, k}+\tilde{B}_{k, j}-O(1)
$$

$$
\tilde{C}_{i, j} \equiv \tilde{A}_{i, k}+\tilde{B}_{k, j}-O(1) \bmod p
$$

- Total runtime $=\tilde{O}\left(n^{2+2 / 3}\right)$


Divide each row into intervals
Entries in the each interval are the same

Since $\tilde{B}$ is monotone, there are at most $n^{2 / 3}$ intervals for each row

# Monotone Min-Plus Product with runtime $n^{(3+\omega) / 2}$ 

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

- Previously: $A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}+\hat{A}_{i, k}, B_{k, j}=n^{1 / 3} \tilde{B}_{k, j}+\hat{B}_{k, j}$

$$
\tilde{C}=\tilde{A} \star \tilde{B}, \text { runtime }=n^{2+2 / 3}
$$

$$
C^{p}(x, y)=A^{p}(x, y) \cdot B^{p}(x, y), \text { runtime }=n^{\omega=2} \cdot \operatorname{deg}_{x} \cdot p=n^{2+2 / 3}
$$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

- Previously: $A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}+\hat{A}_{i, k}, B_{k, j}=n^{1 / 3} \tilde{B}_{k, j}+\hat{B}_{k, j}$

$$
\tilde{C}=\tilde{A} \star \tilde{B}, \text { runtime }=n^{2+2 / 3}
$$

$$
C^{p}(x, y)=A^{p}(x, y) \cdot B^{p}(x, y), \text { runtime }=n^{\omega=2} \cdot \operatorname{deg}_{x} \cdot p=n^{2+2 / 3}
$$

- Recursion: $A_{i, k}=2 \tilde{A}_{i, k}+\hat{A}_{i, k}, B_{k, j}=2 \tilde{B}_{k, j}+\hat{B}_{k, j}$

$$
\tilde{C}=\tilde{A} \star \tilde{B}, \text { by recursion }
$$

$$
C^{p}(x, y)=A^{p}(x, y) \cdot B^{p}(x, y), \text { runtime }=n^{\omega=2} \cdot \operatorname{deg}_{x}^{/ /} \cdot p=n^{2} p
$$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

- Previously: $A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}+\hat{A}_{i, k}, B_{k, j}=n^{1 / 3} \tilde{B}_{k, j}+\hat{B}_{k, j}$

$$
\tilde{C}=\tilde{A} \star \tilde{B}, \text { runtime }=n^{2+2 / 3}
$$

$$
C^{p}(x, y)=A^{p}(x, y) \cdot B^{p}(x, y), \text { runtime }=n^{\omega=2} \cdot \operatorname{deg}_{x} \cdot p=n^{2+2 / 3}
$$

- Recursion: $A_{i, k}=2 \tilde{A}_{i, k}+\hat{A}_{i, k}, B_{k, j}=2 \tilde{B}_{k, j}+\hat{B}_{k, j}$

$$
\tilde{C}=\tilde{A} \star \tilde{B}, \text { by recursion }
$$

$$
C^{p}(x, y)=A^{p}(x, y) \cdot B^{p}(x, y), \text { runtime }=n^{\omega=2} \cdot \operatorname{deg}_{x}^{/ /} \cdot p=n^{2} p
$$

- Hopefully, we can choose $p=\Theta\left(n^{1 / 2}\right)$, so total time $=n^{2.5}$


## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

- Recursion:

$$
\begin{aligned}
& \left\lfloor\frac{A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 A_{i, k}}{n^{1 / 2}}\right\rfloor, \cdots\left\lfloor\frac{B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 B_{k, j}}{n^{1 / 2}}\right\rfloor, \cdots \\
& \left.A_{i, k}^{(l)}(x, y)=x^{\left\lfloor A_{i, k} 2^{\prime 2}\right\rfloor-2\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor}\right\rfloor y^{\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor \bmod p} \\
& B_{k, j}^{(l)}(x, y)=x^{\left\lfloor B_{k, j} 2^{\prime}\right\rfloor-2\left\lfloor B_{k, j} 2^{\prime 2+1}\right\rfloor} \cdot y^{\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor \bmod p} \\
& \text { Compute } C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y) \\
& \left\lfloor\frac{C_{i, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 C_{i, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 C_{i, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 C_{i, j}}{n^{1 / 2}}\right\rfloor, \cdots \cdots
\end{aligned}
$$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

- Recursion:

$$
\begin{aligned}
& \left\lfloor\frac{A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 A_{i, k}}{n^{1 / 2}}\right\rfloor, \cdots\left\lfloor\frac{B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 B_{k, j}}{n^{1 / 2}}\right\rfloor, \cdots \\
& \left.A_{i, k}^{(l)}(x, y)=x^{\left\lfloor A_{i, k} l^{\prime}\right\rfloor-2\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor}\right\rfloor y^{\left\lfloor A_{i, k}\left(2^{l+1}\right\rfloor \bmod p\right.} \\
& B_{k, j}^{(l)}(x, y)=x^{\left\lfloor B_{k, j} 2^{\prime 2}\right\rfloor-2\left\lfloor B_{k, j} 2^{2+1}\right\rfloor} \cdot y^{\left\lfloor B_{k, j} 2^{l+1}\right\rfloor \bmod p} \\
& \text { Compute } C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y) \\
& \left\lfloor\frac{C_{i, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 C_{i, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 C_{i, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 C_{i, j}}{n^{1 / 2}}\right\rfloor, \cdots \cdots \\
& \hline
\end{aligned}
$$

- Error terms:

$$
\begin{aligned}
& A_{i, k}^{(l)}(x, y)=x^{\left\lfloor A_{i, k} / 2^{l}\right\rfloor-2\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor \bmod p} \\
& B_{k, j}^{(l)}(x, y)=x^{\left\lfloor B_{k, j} / 2^{l}\right\rfloor-2\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor \bmod p} \\
& \text { Compute } C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y) \\
& \text { find triples }(i, j, k) \in[n]^{3} \text { s.t. } \\
& \left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor \neq O(1) \\
& \left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor \equiv O(1) \bmod p
\end{aligned}
$$

Inductively maintain all such triples

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

- Error terms:
$A_{i, k}^{(l)}(x, y)=x^{\left\lfloor A_{i, k} / 2^{l}\right\rfloor-2\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor \bmod p}$ $B_{k, j}^{(l)}(x, y)=x^{\left\lfloor B_{k, j} / 2^{l}\right\rfloor-2\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor \bmod p}$
Compute $C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y)$
find triples $(i, j, k) \in[n]^{3}$ s.t.
$\left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor \neq O(1)$
$\left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor \equiv O(1) \bmod p$
Inductively maintain all such triples
- Issues with induction:
- Want to find $(i, j, k) \in[n]^{3}$ $\left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor \equiv 1 \bmod p$

Need to know triples:
$\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor+\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor-\left\lfloor C_{i, j} / 2^{l+1}\right\rfloor \equiv 2^{-1} \bmod p$
But only have triples:
$\left\lfloor A_{i, k} / 2^{l+1}\right\rfloor+\left\lfloor B_{k, j} / 2^{l+1}\right\rfloor-\left\lfloor C_{i, j} / 2^{l+1}\right\rfloor \equiv O(1) \bmod p$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion
Maintaining erroneous terms during recursions:

- Issue:
division by 2 under modulo-p is not necessarily shrinking, could jump around $O(1)$ and $2^{-1}$ are far away under modulo-p


$$
\Delta_{l}=\left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor
$$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion
Maintaining erroneous terms during recursions:

- Issue:
division by 2 under modulo-p is not necessarily shrinking, could jump around $O(1)$ and $2^{-1}$ are far away under modulo-p

Hopefull all $\Delta_{l}$
are in this region


$$
\Delta_{l}=\left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor
$$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion
Maintaining erroneous terms during recursions:

- Issue:
division by 2 under modulo-p is not necessarily shrinking, could jump around $O(1)$ and $2^{-1}$ are far away under modulo-p


$$
\Delta_{l}=\left\lfloor A_{i, k} / 2^{l}\right\rfloor+\left\lfloor B_{k, j} / 2^{l}\right\rfloor-\left\lfloor C_{i, j} / 2^{l}\right\rfloor
$$

## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

## Maintaining erroneous terms during recursions:

## - Issue:

division by 2 under modulo-p is not necessarily shrinking, could jump around $O(1)$ and $2^{-1}$ are far away under modulo-p


## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

## Maintaining erroneous terms during recursions:

## - Issue:

division by 2 under modulo-p is not necessarily shrinking, could jump around $O(1)$ and $2^{-1}$ are far away under modulo-p


## Recursion: first attempt

## Basic idea:

Instead of brute-force, compute the approx-matrix $\tilde{C}=\tilde{A} \star \tilde{B}$ by recursion

## Maintaining erroneous terms during recursions:

## - Issue:

division by 2 under modulo-p is not necessarily shrinking, could jump around $O(1)$ and $2^{-1}$ are far away under modulo-p


## Recursion: scaling residues

## Key idea:

Instead of scaling entry values, only scale the residues modulo-p

## Recursion: scaling residues

## Key idea:

Instead of scaling entry values, only scale the residues modulo-p

- Previously: $\left\lfloor\frac{A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 A_{i, k}}{n^{1 / 2}}\right\rfloor, \cdots \cdots,\left\lfloor\frac{B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 B_{k, j}}{n^{1 / 2}}\right\rfloor, \cdots \cdots$

$$
A_{i, k}^{(l)}(x, y)=x^{\{0,1\}} \cdot y^{\left\lfloor A_{i, k} / 2^{2}\right\rfloor \bmod p} \quad B_{k, j}^{(l)}(x, y)=x^{\{0,1\}} \cdot y^{\left\lfloor B_{k, j} / 2^{l}\right\rfloor \bmod p}
$$

## Recursion: scaling residues

## Key idea:

Instead of scaling entry values, only scale the residues modulo-p

- Previously: $\left\lfloor\frac{A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 A_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 A_{i, k}}{n^{1 / 2}}\right\rfloor, \cdots \cdots,\left\lfloor\frac{B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 B_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 B_{k, j}}{n^{1 / 2}}\right\rfloor, \cdots \cdots$

$$
A_{i, k}^{(l)}(x, y)=x^{\{0,1\}} \cdot y^{\left\lfloor A_{i, k} / l^{2}\right\rfloor \bmod p} \quad B_{k, j}^{(l)}(x, y)=x^{\{0,1\}} \cdot y^{\left\lfloor B_{k, j} / 2^{l}\right\rfloor \bmod p}
$$

- Now: $\quad A_{i, k}=p \tilde{A}_{i, k}+R_{i, k} \quad B_{k, j}=p \tilde{B}_{k, j}+S_{k, j}$

$$
\begin{gathered}
\left\lfloor\frac{R_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 R_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 R_{i, k}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 R_{i, k}}{n^{1 / 2}}\right\rfloor, \cdots \cdots,\left\lfloor\frac{S_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{2 S_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{4 S_{k, j}}{n^{1 / 2}}\right\rfloor,\left\lfloor\frac{8 S_{k, j}}{n^{1 / 2}}\right\rfloor, \cdots \cdots \\
A_{i, k}^{(l)}(x, y)=x^{\left\lfloor R_{i, k} / 2^{l}\right\rfloor-2\left\lfloor R_{i, k} / 2^{2+1}\right\rfloor} \cdot y^{\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor} \quad B_{k, j}^{(l)}(x, y)=x^{\left\lfloor S_{k, j} / 2^{l}\right\rfloor-2\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor}
\end{gathered}
$$

## Recursion: scaling residues

## Key idea:

Instead of scaling entry values, only scale the residues modulo-p

$$
\begin{array}{|lll}
\hline \text { - Now: } & A_{i, k}=p \tilde{A}_{i, k}+R_{i, k} & B_{k, j}=p \tilde{B}_{k, j}+S_{k, j} \\
A_{i, k}^{(l)}(x, y)=x^{\left\lfloor R_{i, k} / 2^{l}\right\rfloor-2\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor} & B_{k, j}^{(l)}(x, y)=x^{\left\lfloor S_{k, j} / 2^{l}\right\rfloor-2\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor} \\
\hline
\end{array}
$$

| $\qquad C_{i, j}=p \tilde{\boldsymbol{C}}_{i, j}+T_{i, j}$ |
| :--- |
| $\left.\qquad T_{i, j} / 2^{l}\right\rfloor=\min _{1 \leq k \leq n}\left\{\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor\| \| \tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j} \mid=O(1)\right\} \pm O(1)$ |
| Compute $C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y)$, and then some extra work |

## Recursion: scaling residues

## Key idea:

Instead of scaling entry values, only scale the residues modulo-p

- Error terms:
$A_{i, k}^{(l)}(x, y)=x^{\left[R_{i, k} / 2^{l}\right\rfloor-2\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor R_{i, l} / 2^{l+1}\right\rfloor}$
$B_{k, j}^{(l)}(x, y)=x^{\left\lfloor S_{k j} / 2^{I}\right\rfloor-2\left\lfloor S_{k j} / 2^{+1}\right\rfloor} \cdot y^{\left\lfloor S_{k j,} / 2^{2+1}\right\rfloor}$
Compute $C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y)$
find triples $(i, j, k) \in[n]^{3}$ s.t.
$\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$
$\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$
Inductively maintain all such triples


## Recursion: scaling residues

## Key idea:

Instead of scaling entry values, only scale the residues modulo-p

- Error terms:
$A_{i, k}^{(l)}(x, y)=x^{\left\lfloor R_{i, k} / 2^{l}\right\rfloor-2\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor}$ $B_{k, j}^{(l)}(x, y)=x^{\left\lfloor S_{k, j} / 2^{\lfloor }\right\rfloor-2\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor} \cdot y^{\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor}$ Compute $C^{(l)}(x, y)=A^{(l)}(x, y) \cdot B^{(l)}(x, y)$
find triples $(i, j, k) \in[n]^{3}$ s.t.
$\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$
$\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$
Inductively maintain all such triples
- Previous issues fixed:
- Want to find $(i, j, k) \in[n]^{3}$

$$
\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)
$$

Need to know triples:
$\left\lfloor T_{i, j} / 2^{2+1}\right\rfloor=\left\lfloor R_{i, k} / 2^{2+1}\right\rfloor+\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor \pm \frac{O(1)}{2}$
Already have maintained: $\left\lfloor T_{i, j} / 2^{l+1}\right\rfloor=\left\lfloor R_{i, k} / 2^{l+1}\right\rfloor+\left\lfloor S_{k, j} / 2^{l+1}\right\rfloor \pm O(1)$

## Recursion: finding error terms

## Basic idea:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

Goal:

- At each recursion level, find all $(i, j, k) \in[n]^{3}$ such that:
- $\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$ $\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$


## Recursion: finding error terms

## Basic idea:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

Goal:

- At each recursion level, find all $(i, j, k) \in[n]^{3}$ such that:
- $\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$ $\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$


## Sanity check:

- Even without recursion ( $l=0$ ), the probability that $T_{i, j}=R_{i, k}+S_{k, j}$ is $\tilde{O}\left(n^{-1 / 2}\right)$
- Need recursion to locate all k's


## Recursion: finding error terms

## Basic idea:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

Goal:

- At each recursion level, find all $(i, j, k) \in[n]^{3}$ such that:
- $\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$ $\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right| \neq O(1)$

Total number of error terms:

- $\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$ or

$$
\left|A_{i, k}+B_{k, j}-C_{i, j}\right| \equiv O\left(2^{l}\right) \bmod p
$$

- Probability is at most $\tilde{O}\left(2^{l} \cdot n^{-1 / 2}\right)$ Total \#errors $=\tilde{O}\left(2^{l} \cdot n^{3} / p\right)$


## Recursion: finding error terms

## Basic idea:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

## Total number of error terms:

- $\left\lfloor T_{i, j} / 2^{l}\right\rfloor=\left\lfloor R_{i, k} / 2^{l}\right\rfloor+\left\lfloor S_{k, j} / 2^{l}\right\rfloor \pm O(1)$ or

$$
\left|A_{i, k}+B_{k, j}-C_{i, j}\right| \equiv O\left(2^{l}\right) \bmod p
$$

- Probability is at most $\tilde{O}\left(2^{l} \cdot n^{-1 / 2}\right)$ Total \#errors $=\tilde{O}\left(2^{l} \cdot n^{3} / p\right)$


Key observation:
Since B is monotone, we can partition each row $\left\{\left\lfloor S_{k, j} / 2^{l}\right\rfloor\right\}_{1 \leq j \leq n}$ into $O\left(n / 2^{l}\right)$ intervals, such that entries in the each interval are the same. Group error terms as index-interval triples ( $i, k,[a, b]$ )

## Recursion: finding error terms

## Index-interval triples:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

Total \#Index-interval triples:

- $\left|A_{i, k}+B_{k, j}-C_{i, j}\right| \equiv O\left(2^{l}\right) \bmod p$
- Probability is at most $\tilde{O}\left(2^{l} \cdot n^{-1 / 2}\right)$ Total \#error terms $=\tilde{O}\left(2^{l} \cdot n^{3} / p\right)$
- Partition each B-row into $O\left(n / 2^{l}\right)$ intervals
- Total \#index-interval triples $=\tilde{O}\left(n^{3} / p\right)$


## Recursion: finding error terms

## Index-interval triples:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

## Total \#Index-interval triples:

- $\left|A_{i, k}+B_{k, j}-C_{i, j}\right| \equiv O\left(2^{l}\right) \bmod p$
- Probability is at most $\tilde{O}\left(2^{l} \cdot n^{-1 / 2}\right)$ Total \#error terms $=\tilde{O}\left(2^{l} \cdot n^{3} / p\right)$

- Partition each B-row into $O\left(n / 2^{l}\right)$ intervals
- Total \#index-interval triples $=\tilde{O}\left(n^{3} / p\right)$


## Recursion: finding error terms

## Index-interval triples:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime

## Total \#Index-interval triples:

- $\left|A_{i, k}+B_{k, j}-C_{i, j}\right| \equiv O\left(2^{l}\right) \bmod p$
- Probability is at most $\tilde{O}\left(2^{l} \cdot n^{-1 / 2}\right)$ Total \#error terms $=\tilde{O}\left(2^{l} \cdot n^{3} / p\right)$
- Partition each B-row into $O\left(n / 2^{l}\right)$ intervals
- Total \#index-interval triples $=\tilde{O}\left(n^{3} / p\right)$



## Subtracting error terms:

For any $(i, k,[a, b])$, use segment-tree data structures

$$
C_{i, j}^{(l)}(x, y) \leftarrow C_{i, j}^{(l)}(x, y)-A_{i, k}^{(l)}(x, y) \cdot B_{k, j}^{(l)}(x, y)
$$

simultaneously for all $j \in[a, b]$, as all $B_{k, j}^{(l)}$ are equal

## Recursion: finding error terms

## Index-interval triples:

Use the fact that $p \in\left[n^{1 / 2}, 2 n^{1 / 2}\right]$ is a uniformly random prime


Maintaining index-interval triples recursively:

- Triples $\{(i, k,[a, b])\}$ on the $l$-level is a refinement of triples on the $(l+1)$-level


## Thanks for listening


[^0]:    quotients remainder

