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Structured Min-Plus Problems



Min-Plus Product

• Given integral  matrices A and B, compute  product: 
                                       


• Min-Plus Product is equivalent to All-Pairs Shortest Paths  [FM, 1971]


• Fastest runtime for  or APSP:   [Williams, 2018]


• Hardness conjecture:    product requires  time

n × n (min , + )
(A ⋆ B)i,j = min

k
{Ai,k + Bk,j}

(min , + ) n3/2Ω( log n)

(min , + ) n3−o(1)



Structured Min-Plus Product

• If A and B have bounded entries  
then  can be computed in  time  [Alon et al., 1997]


• Inputs matrices with more structures:


• Bounded-difference matrices        [Bringmann et al., 2016]


• Monotone matrices     [Vassilevska Williams and Xu, 2020]

∈ {−W, ⋯, W, ∞}
A ⋆ B Õ(Wnω)



Bounded-Difference Min-Plus Product
• Matrix X has bounded-difference if: 

                                   


• Want to compute  when A and B both have bounded-difference


• Many applications in string problems:


• Language edit distance, RNA folding   [Bringmann et al., 2016]


• Tree edit distance   [Mao, 2021]


• Dyck edit distance   [Fried et al., 2022]

|Xi,j − Xi,j+1 | , |Xi,j − Xi+1,j | ≤ 1

A ⋆ B



Monotone Min-Plus Product

• Matrix X is monotone if: 
                                      


• Want to compute  when B is monotone


• Generalization of bounded-difference min-plus product [GPWX, 2021]


• Further application in graph problems:


• Single-source replacement paths with negative weights  [GPWX, 2021]

0 ≤ Xi,j ≤ Xi,j+1 ≤ O(n)

A ⋆ B



Min-Plus Convolution

• Given integral arrays A and B of length n, compute  convolution: 
                                       


• Fastest runtime for  conv:   [Williams, 2018]


• Hardness conjecture:  conv requires  time


• Stronger than APSP or 3SUM conjecture

(min , + )
(A ⋄ B)k = min

i
{Ak−i + Bi}

(min , + ) n2/2Ω( log n)

(min , + ) n2−o(1)



Monotone Min-Plus Convolution

• Array X is monotone if: 
                                      


• Want to compute  when A and B both are monotone


• Applications:


• Histogram indexing, necklace alignment [BCD+, 2006] [ACLL, 2014] 

0 ≤ Xi ≤ Xi+1 ≤ O(n)

A ⋄ B
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Monotone Min-Plus Product

with runtime n2+ω/3



• For convenience, assume  for the rest


• Estimate  up to sub-linear additive errors 
A common step in previous works


• Rounding: ,  
Compute: 


• Approximation:  
Runtime: 

ω = 2

C = A ⋆ B

Ãi,j = ⌊Ai,j/n1/3⌋ B̃i,j = ⌊Bi,j/n1/3⌋
C̃ = Ã ⋆ B̃

| C̃i,j − Ci,j/n1/3 | = O(1)
Õ(n2+2/3)

Approximate Min-Plus



Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder







  

Ai,k = n1/3Ãi,k + ̂Ai,k
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and then minimize:


             

k ∈ [n]
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Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Using polynomials: 







Ai,k(x, y) = x ̂Ai,k ⋅ yÃi,k

Bk,j(x, y) = xB̂k,j ⋅ yB̃k,j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

Runtime? No help


Multiplying polynomial matrices


       
 
takes time


         

C(x, y) = A(x, y) ⋅ B(x, y)

nω=2 ⋅ degx ⋅ degy = n3

n1/3

=

n2/3

=



Modulo on y-degrees

Using polynomials: 







Ai,k(x, y) = x ̂Ai,k ⋅ yÃi,k

Bk,j(x, y) = xB̂k,j ⋅ yB̃k,j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

Degree reduction by modulo: 

      


      


   

Ap
i,k(x, y) = x ̂Ai,k ⋅ yÃi,k mod p

Bp
k,j(x, y) = xB̂k,j ⋅ yB̃k,j mod p

Cp
i,j(x, y) =

n

∑
k=1

(Ap
i,k ⋅ Bp

k,j)(x, y)
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Runtime? 

Multiplying polynomial matrices


     
 
takes time


        

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y)
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Key idea: apply modulo-p operations on degrees of y-variables

Modulo on y-degrees

Only focus on  s.t.   
k ∈ [n] | Ãi,k + B̃k,j − C̃i,j | = O(1)

Ci,j(x, y) = yC̃i,jF0(x)+yC̃i,j+1F1(x)+yC̃i,j+2F2(x) + ⋯ + yC̃i,j+pFp(x) + yC̃i,j+p+1Fp(x) + ⋯⋯

Taking modulo-p adds many erroneous x-monomials





In other words, many x-monomials are hashed to the same y-bucket

Cp
i,j(x, y) = yC̃i,j mod p[F0(x) + Fp(x)] + yC̃i,j+1 mod p[F1(x) + F1+p(x)] + yC̃i,j+2 mod pF2(x) + ⋯⋯



The number of erroneous x-terms:  

If  is a random prime, then total #errorsp ∈ [n1/3,2n1/3] = Õ(n3−1/3)

Bounding total errors

Proof: 

• Fix any  s.t.  
What is the probability that   


• As  is random, the probability is 

i, j, k ∈ [n] | Ãi,k + B̃k,j − C̃i,j | ≠ O(1)
Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

p ∈ [n1/3,2n1/3] Õ(n−1/3)



Goal: 
Fix a prime 

, find all 
 such that: 

    


p ∈ [n1/3,2n1/3]
(i, j, k) ∈ [n]3
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Goal: 
Fix a prime 

, find all 
 such that: 

    


p ∈ [n1/3,2n1/3]
(i, j, k) ∈ [n]3

| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

Finding all error monomials

i

k

k

×

Divide each row into intervals

 
Entries in the each interval are 
the same

Since  is monotone, there 
are at most  intervals for 
each row

B̃
n2/3

Algorithm: 
• Fix any  and any interval 

of k-th row of B 
• List all j in the interval such that  

        



• Total runtime = 

i, k ∈ [n]

C̃i,j ≠ Ãi,k + B̃k,j − O(1)
C̃i,j ≡ Ãi,k + B̃k,j − O(1) mod p

Õ(n2+2/3)



Monotone Min-Plus Product

with runtime n(3+ω)/2
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C̃ = Ã ⋆ B̃

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y) nω=2 ⋅ degx ⋅ p = n2p

• Previously:   ,   
                             ,  runtime =  

,  runtime = 
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Basic idea:  
Instead of brute-force, compute the approx-matrix  by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Recursion:  
  

 
 

 
 
Compute  

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⋯⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⋯

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p
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⌋, ⌊

2Ci,j

n1/2
⌋, ⌊

4Ci,j

n1/2
⌋, ⌊

8Ci,j

n1/2
⌋, ⋯⋯
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Recursion: first attempt

• Recursion:  
  

 
 

 
 
Compute  

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⋯⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⋯

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)
⌊

Ci,j

n1/2
⌋, ⌊

2Ci,j

n1/2
⌋, ⌊

4Ci,j

n1/2
⌋, ⌊

8Ci,j

n1/2
⌋, ⋯⋯

• Error terms:  
 

 

Compute  
 
find triples  s.t. 

 
 
Inductively maintain all such triples

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)

(i, j, k) ∈ [n]3

⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≠ O(1)
⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≡ O(1) mod p



Basic idea:  
Instead of brute-force, compute the approx-matrix  by recursionC̃ = Ã ⋆ B̃
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division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and  are far away under modulo-pO(1) 2−1

0 p − 1
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Instead of scaling entry values, only scale the residues modulo-p

Recursion: scaling residues
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Recursion: scaling residues

• Previously:  , 


                              

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⌊

4Ai,k

n1/2
⌋, ⌊

8Ai,k

n1/2
⌋, ⋯⋯ ⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⌊

4Bk,j

n1/2
⌋, ⌊

8Bk,j

n1/2
⌋, ⋯⋯

A(l)
i,k(x, y) = x{0,1} ⋅ y⌊Ai,k/2l⌋ mod p B(l)

k,j(x, y) = x{0,1} ⋅ y⌊Bk,j/2l⌋ mod p
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                     , 


             

Ai,k = pÃi,k+Ri,k Bk,j = pB̃k,j+Sk,j

⌊
Ri,k

n1/2
⌋, ⌊

2Ri,k

n1/2
⌋, ⌊

4Ri,k

n1/2
⌋, ⌊

8Ri,k

n1/2
⌋, ⋯⋯ ⌊

Sk,j

n1/2
⌋, ⌊
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n1/2
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k,j(x, y) = x⌊Sk,j/2l⌋−2⌊Sk,j/2l+1⌋ ⋅ y⌊Sk,j/2l+1⌋
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• Now:                            


               

Ai,k = pÃi,k+Ri,k Bk,j = pB̃k,j+Sk,j
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• Recursion:                                      


                        


                        Compute , and then some extra work

Ci,j = pC̃i,j+Ti,j

⌊Ti,j /2l⌋ = min
1≤k≤n

{⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ∣ | Ãi,k + B̃k,j − C̃i,j | = O(1)} ± O(1)

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)



• Error terms:  
 

 

Compute  
 
find triples  s.t. 

 
 
Inductively maintain all such triples

A(l)
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| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)
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Instead of scaling entry values, only scale the residues modulo-p



• Previous issues fixed: 

• Want to find 
 

 
Need to know triples: 

 

 
Already have maintained: 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2
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Recursion: finding error terms
Basic idea:  
Use the fact that  is a uniformly random primep ∈ [n1/2,2n1/2]

Goal: 

• At each recursion level, find all 
 such that:


•  

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)



Recursion: finding error terms
Basic idea:  
Use the fact that  is a uniformly random primep ∈ [n1/2,2n1/2]

Sanity check: 

• Even without recursion (l=0), 
the probability that 

 is 


• Need recursion to locate all k’s

Ti,j = Ri,k + Sk,j Õ(n−1/2)

Goal: 

• At each recursion level, find all 
 such that:


•  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Recursion: finding error terms
Basic idea:  
Use the fact that  is a uniformly random primep ∈ [n1/2,2n1/2]

Total number of error terms: 

•  
or  




• Probability is at most  
Total #errors = 

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)
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 such that:


•  

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
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Use the fact that  is a uniformly random primep ∈ [n1/2,2n1/2]

Total number of error terms: 
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or  




• Probability is at most  
Total #errors = 

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)

Extra factor of 2l

k

×
i

k

Key observation: 
Since B is monotone, we can partition each row 

 into  intervals, such that 
entries in the each interval are the same. Group 
error terms as index-interval triples 

{⌊Sk,j /2l⌋}1≤ j≤n O(n/2l)

(i, k, [a, b])
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• Probability is at most  
Total #error terms = 


• Partition each B-row  into  intervals


• Total #index-interval triples = 
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Õ(2l ⋅ n−1/2)
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Recursion: finding error terms
Index-interval triples: 
Use the fact that  is a uniformly random primep ∈ [n1/2,2n1/2]

Total #Index-interval triples: 
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• Probability is at most  
Total #error terms = 


• Partition each B-row  into  intervals


• Total #index-interval triples = 

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
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O(n/2l)

Õ(n3/p)

k

×
i

k

Subtracting error terms: 
For any , use segment-tree data structures 
    

simultaneously for all , as all  are equal

(i, k, [a, b])
C(l)

i,j (x, y) ← C(l)
i,j (x, y) − A(l)

i,k(x, y) ⋅ B(l)
k,j(x, y)

j ∈ [a, b] B(l)
k,j



Recursion: finding error terms
Index-interval triples: 
Use the fact that  is a uniformly random primep ∈ [n1/2,2n1/2]

Maintaining index-interval triples recursively:


• Triples  on the -level is a refinement of triples on the -level{(i, k, [a, b])} l (l + 1)

l + 1 l + 1 l + 1

l l l l l l



Thanks for listening


