
Faster Min-Plus Product 
for Monotone Instances

Shucheng Chi, Ran Duan, Tianle Xie, Tianyi Zhang1

Tsinghua University Tel Aviv University

1. The fourth author is supported by funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 803118 UncertainENV)

Structured Min-Plus Problems

Min-Plus Product

• Given integral matrices A and B, compute product: 

• Min-Plus Product is equivalent to All-Pairs Shortest Paths [FM, 1971]

• Fastest runtime for or APSP: [Williams, 2018]

• Hardness conjecture: product requires time

n × n (min , +)
(A ⋆ B)i,j = min

k
{Ai,k + Bk,j}

(min , +) n3/2Ω(log n)

(min , +) n3−o(1)

Structured Min-Plus Product

• If A and B have bounded entries  
then can be computed in time [Alon et al., 1997]

• Inputs matrices with more structures:

• Bounded-difference matrices [Bringmann et al., 2016]

• Monotone matrices [Vassilevska Williams and Xu, 2020]

∈ {−W, ⋯, W, ∞}
A ⋆ B Õ(Wnω)

Bounded-Difference Min-Plus Product
• Matrix X has bounded-difference if: 

• Want to compute when A and B both have bounded-difference

• Many applications in string problems:

• Language edit distance, RNA folding [Bringmann et al., 2016]

• Tree edit distance [Mao, 2021]

• Dyck edit distance [Fried et al., 2022]

|Xi,j − Xi,j+1 | , |Xi,j − Xi+1,j | ≤ 1

A ⋆ B

Monotone Min-Plus Product

• Matrix X is monotone if: 

• Want to compute when B is monotone

• Generalization of bounded-difference min-plus product [GPWX, 2021]

• Further application in graph problems:

• Single-source replacement paths with negative weights [GPWX, 2021]

0 ≤ Xi,j ≤ Xi,j+1 ≤ O(n)

A ⋆ B

Min-Plus Convolution

• Given integral arrays A and B of length n, compute convolution: 

• Fastest runtime for conv: [Williams, 2018]

• Hardness conjecture: conv requires time

• Stronger than APSP or 3SUM conjecture

(min , +)
(A ⋄ B)k = min

i
{Ak−i + Bi}

(min , +) n2/2Ω(log n)

(min , +) n2−o(1)

Monotone Min-Plus Convolution

• Array X is monotone if: 

• Want to compute when A and B both are monotone

• Applications:

• Histogram indexing, necklace alignment [BCD+, 2006] [ACLL, 2014]

0 ≤ Xi ≤ Xi+1 ≤ O(n)

A ⋄ B

Runtime for Structured Min-Plus Instances
reference bounded-difference

min-plus product
monotone

min-plus product
monotone

min-plus convolution

baseline

Chan and Lewenstein

2015

Bringmann et al.

2016

V. Williams and Xu

2020

Gu et al.

2021

Chi, Duan and Xie

2022

new

n3 n3 n2

FMM exponent [Alman and Vassilevska Williams, 2021]ω < 2.373

n2.824

n1.859

n(15+ω)/6

n(12+ω)/5

n2+ω/3

n(3+ω)/2 n(3+ω)/2 n1.5

Runtime for Structured Min-Plus Instances
reference bounded-difference

min-plus product
monotone

min-plus product
monotone

min-plus convolution

baseline

Chan and Lewenstein

2015

Bringmann et al.

2016

V. Williams and Xu

2020

Gu et al.

2021

Chi, Duan and Xie

2022

new

n3 n3 n2

FMM exponent [Alman and Vassilevska Williams, 2021]ω < 2.373

n2.824

n1.859

n(15+ω)/6

n(12+ω)/5

n2+ω/3

n(3+ω)/2 n(3+ω)/2 n1.5

Monotone Min-Plus Product

with runtime n2+ω/3

• For convenience, assume for the rest

• Estimate up to sub-linear additive errors 
A common step in previous works

• Rounding: ,  
Compute:

• Approximation:  
Runtime:

ω = 2

C = A ⋆ B

Ãi,j = ⌊Ai,j/n1/3⌋ B̃i,j = ⌊Bi,j/n1/3⌋
C̃ = Ã ⋆ B̃

| C̃i,j − Ci,j/n1/3 | = O(1)
Õ(n2+2/3)

Approximate Min-Plus

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Ai,k = n1/3Ãi,k + ̂Ai,k

Bk,j = n1/3B̃k,j + B̂k,j

Ci,j = n1/3C̃i,j +?

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Ai,k = n1/3Ãi,k + ̂Ai,k

Bk,j = n1/3B̃k,j + B̂k,j

Ci,j = n1/3C̃i,j +?

quotients remainder

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Ai,k = n1/3Ãi,k + ̂Ai,k

Bk,j = n1/3B̃k,j + B̂k,j

Ci,j = n1/3C̃i,j +?

quotients remainder

Only focus on such that:

and then minimize:

k ∈ [n]

| Ãi,k + B̃k,j − C̃i,j | = O(1)

̂Ai,k + B̂k,j

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Ai,k = n1/3Ãi,k + ̂Ai,k

Bk,j = n1/3B̃k,j + B̂k,j

Ci,j = n1/3C̃i,j +?

quotients remainder

Using polynomials:

Ai,k(x, y) = x ̂Ai,k ⋅ yÃi,k

Bk,j(x, y) = xB̂k,j ⋅ yB̃k,j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Using polynomials:

Ai,k(x, y) = x ̂Ai,k ⋅ yÃi,k

Bk,j(x, y) = xB̂k,j ⋅ yB̃k,j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

×i

j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

= yC̃i, jF0(x) + yC̃i, j+1F1(x) + yC̃i, j+2F2(x) + ⋯⋯

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

×i

j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

= yC̃i, jF0(x) + yC̃i, j+1F1(x) + yC̃i, j+2F2(x) + ⋯⋯

Only focus on such that:

and then minimize:

k ∈ [n]

| Ãi,k + B̃k,j − C̃i,j | = O(1)

̂Ai,k + B̂k,j

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

×i

j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

= yC̃i, jF0(x)+yC̃i, j+1F1(x)+yC̃i, j+2F2(x) + ⋯⋯

Only focus on such that:

and then minimize:

k ∈ [n]

| Ãi,k + B̃k,j − C̃i,j | = O(1)

̂Ai,k + B̂k,j

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

×i

j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

= yC̃i, jF0(x)+yC̃i, j+1F1(x)+yC̃i, j+2F2(x) + ⋯⋯

Only focus on such that:

and then minimize:

k ∈ [n]

| Ãi,k + B̃k,j − C̃i,j | = O(1)

̂Ai,k + B̂k,j

Ci,j = n1/3(C̃i,j + b) + min-deg of Fb(x)

Basic idea: match quotients with , then find minimum remaindersC̃

Quotient & Remainder

Using polynomials:

Ai,k(x, y) = x ̂Ai,k ⋅ yÃi,k

Bk,j(x, y) = xB̂k,j ⋅ yB̃k,j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

Runtime? No help

Multiplying polynomial matrices

  
 
takes time

C(x, y) = A(x, y) ⋅ B(x, y)

nω=2 ⋅ degx ⋅ degy = n3

n1/3

=

n2/3

=

Modulo on y-degrees

Using polynomials:

Ai,k(x, y) = x ̂Ai,k ⋅ yÃi,k

Bk,j(x, y) = xB̂k,j ⋅ yB̃k,j

Ci,j(x, y) =
n

∑
k=1

(Ai,k ⋅ Bk,j)(x, y)

Degree reduction by modulo:

Ap
i,k(x, y) = x ̂Ai,k ⋅ yÃi,k mod p

Bp
k,j(x, y) = xB̂k,j ⋅ yB̃k,j mod p

Cp
i,j(x, y) =

n

∑
k=1

(Ap
i,k ⋅ Bp

k,j)(x, y)

Key idea: apply modulo-p operations on degrees of y-variables

Key idea: apply modulo-p operations on degrees of y-variables

Modulo on y-degrees

Degree reduction by modulo:

Ap
i,k(x, y) = x ̂Ai,k ⋅ yÃi,k mod p

Bp
k,j(x, y) = xB̂k,j ⋅ yB̃k,j mod p

Cp
i,j(x, y) =

n

∑
k=1

(Ap
i,k ⋅ Bp

k,j)(x, y)

Runtime?

Multiplying polynomial matrices

  
 
takes time

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y)

nω=2 ⋅ degx ⋅ p = n2+1/3p

n1/3

=

Key idea: apply modulo-p operations on degrees of y-variables

Modulo on y-degrees

Only focus on s.t.
k ∈ [n] | Ãi,k + B̃k,j − C̃i,j | = O(1)

Ci,j(x, y) = yC̃i,jF0(x)+yC̃i,j+1F1(x)+yC̃i,j+2F2(x) + ⋯ + yC̃i,j+pFp(x) + yC̃i,j+p+1Fp(x) + ⋯⋯

Taking modulo-p adds many erroneous x-monomials

In other words, many x-monomials are hashed to the same y-bucket

Cp
i,j(x, y) = yC̃i,j mod p[F0(x) + Fp(x)] + yC̃i,j+1 mod p[F1(x) + F1+p(x)] + yC̃i,j+2 mod pF2(x) + ⋯⋯

The number of erroneous x-terms:

If is a random prime, then total #errorsp ∈ [n1/3,2n1/3] = Õ(n3−1/3)

Bounding total errors

Proof:

• Fix any s.t.  
What is the probability that

• As is random, the probability is

i, j, k ∈ [n] | Ãi,k + B̃k,j − C̃i,j | ≠ O(1)
Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

p ∈ [n1/3,2n1/3] Õ(n−1/3)

Goal: 
Fix a prime

, find all
 such that:

p ∈ [n1/3,2n1/3]
(i, j, k) ∈ [n]3

| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

Finding all error monomials

i

k

k

×

Goal: 
Fix a prime

, find all
 such that:

p ∈ [n1/3,2n1/3]
(i, j, k) ∈ [n]3

| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

Finding all error monomials

i

k

k

×

Divide each row into intervals

 
Entries in the each interval are
the same

Goal: 
Fix a prime

, find all
 such that:

p ∈ [n1/3,2n1/3]
(i, j, k) ∈ [n]3

| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

Finding all error monomials

i

k

k

×

Divide each row into intervals

 
Entries in the each interval are
the same

Since is monotone, there
are at most intervals for
each row

B̃
n2/3

Goal: 
Fix a prime

, find all
 such that:

p ∈ [n1/3,2n1/3]
(i, j, k) ∈ [n]3

| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Ãi,k + B̃k,j − C̃i,j ≡ O(1) mod p

Finding all error monomials

i

k

k

×

Divide each row into intervals

 
Entries in the each interval are
the same

Since is monotone, there
are at most intervals for
each row

B̃
n2/3

Algorithm:
• Fix any and any interval

of k-th row of B
• List all j in the interval such that  

  

• Total runtime =

i, k ∈ [n]

C̃i,j ≠ Ãi,k + B̃k,j − O(1)
C̃i,j ≡ Ãi,k + B̃k,j − O(1) mod p

Õ(n2+2/3)

Monotone Min-Plus Product

with runtime n(3+ω)/2

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Previously: ,  
 , runtime =  

, runtime =

Ai,k = n1/3Ãi,k + ̂Ai,k Bk,j = n1/3B̃k,j + B̂k,j
C̃ = Ã ⋆ B̃ n2+2/3

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y) nω=2 ⋅ degx ⋅ p = n2+2/3

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Recursion: ,  
 , by recursion 

, runtime =

Ai,k = 2Ãi,k + ̂Ai,k Bk,j = 2B̃k,j + B̂k,j
C̃ = Ã ⋆ B̃

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y) nω=2 ⋅ degx ⋅ p = n2p

• Previously: ,  
 , runtime =  

, runtime =

Ai,k = n1/3Ãi,k + ̂Ai,k Bk,j = n1/3B̃k,j + B̂k,j
C̃ = Ã ⋆ B̃ n2+2/3

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y) nω=2 ⋅ degx ⋅ p = n2+2/3

O(1)

=

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Recursion: ,  
 , by recursion 

, runtime =

Ai,k = 2Ãi,k + ̂Ai,k Bk,j = 2B̃k,j + B̂k,j
C̃ = Ã ⋆ B̃

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y) nω=2 ⋅ degx ⋅ p = n2p

• Hopefully, we can choose , so total time = p = Θ(n1/2) n2.5

• Previously: ,  
 , runtime =  

, runtime =

Ai,k = n1/3Ãi,k + ̂Ai,k Bk,j = n1/3B̃k,j + B̂k,j
C̃ = Ã ⋆ B̃ n2+2/3

Cp(x, y) = Ap(x, y) ⋅ Bp(x, y) nω=2 ⋅ degx ⋅ p = n2+2/3

O(1)

=

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Recursion:  
  

 

 
 
Compute  

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⋯⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⋯

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)
⌊

Ci,j

n1/2
⌋, ⌊

2Ci,j

n1/2
⌋, ⌊

4Ci,j

n1/2
⌋, ⌊

8Ci,j

n1/2
⌋, ⋯⋯

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Recursion:  
  

 

 
 
Compute  

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⋯⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⋯

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)
⌊

Ci,j

n1/2
⌋, ⌊

2Ci,j

n1/2
⌋, ⌊

4Ci,j

n1/2
⌋, ⌊

8Ci,j

n1/2
⌋, ⋯⋯

• Error terms:  
 

 

Compute  
 
find triples s.t. 

 
 
Inductively maintain all such triples

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)

(i, j, k) ∈ [n]3

⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≠ O(1)
⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≡ O(1) mod p

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

• Issues with induction:

• Want to find
 

 
Need to know triples: 

 
 
But only have triples: 

(i, j, k) ∈ [n]3

⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≡ 1 mod p

⌊Ai,k /2l+1⌋ + ⌊Bk,j /2l+1⌋ − ⌊Ci,j /2l+1⌋ ≡ 2−1 mod p

⌊Ai,k /2l+1⌋ + ⌊Bk,j /2l+1⌋ − ⌊Ci,j /2l+1⌋ ≡ O(1) mod p

• Error terms:  
 

 

Compute  
 
find triples s.t. 

 
 
Inductively maintain all such triples

A(l)
i,k(x, y) = x⌊Ai,k/2l⌋−2⌊Ai,k/2l+1⌋ ⋅ y⌊Ai,k/2l+1⌋ mod p

B(l)
k,j(x, y) = x⌊Bk,j/2l⌋−2⌊Bk,j/2l+1⌋ ⋅ y⌊Bk,j/2l+1⌋ mod p

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)

(i, j, k) ∈ [n]3

⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≠ O(1)
⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋ ≡ O(1) mod p

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Maintaining erroneous terms during recursions:

• Issue: 
division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and are far away under modulo-pO(1) 2−1

0 p − 1

mod p

Δl = ⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Maintaining erroneous terms during recursions:

• Issue: 
division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and are far away under modulo-pO(1) 2−1

0 p − 1

mod p

Δl = ⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋

Hopefull all  
are in this region

Δl

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Maintaining erroneous terms during recursions:

• Issue: 
division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and are far away under modulo-pO(1) 2−1

0 p − 1

mod p

1

Δl ≡ 1

Δl = ⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋

Hopefull all  
are in this region

Δl

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Maintaining erroneous terms during recursions:

• Issue: 
division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and are far away under modulo-pO(1) 2−1

0 p − 1

mod p

1

Δl ≡ 1 Δl+1 ≡ 2−1

p + 1
2

Δl = ⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋

Hopefull all  
are in this region

Δl

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Maintaining erroneous terms during recursions:

• Issue: 
division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and are far away under modulo-pO(1) 2−1

0 p − 1

mod p

1

Δl ≡ 1 Δl+1 ≡ 2−1

p + 1
2

Δl+2 ≡ 2−2

p + 1
4

Δl = ⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋

Hopefull all  
are in this region

Δl

Basic idea:  
Instead of brute-force, compute the approx-matrix by recursionC̃ = Ã ⋆ B̃

Recursion: first attempt

Maintaining erroneous terms during recursions:

• Issue: 
division by 2 under modulo-p is not necessarily shrinking, could jump around 

 and are far away under modulo-pO(1) 2−1

0 p − 1

mod p

1

Δl ≡ 1 Δl+1 ≡ 2−1

p + 1
2

Δl+2 ≡ 2−2

p + 1
4

Δl+3 ≡ 2−3

5p + 1
8

Δl = ⌊Ai,k /2l⌋ + ⌊Bk,j /2l⌋ − ⌊Ci,j /2l⌋

Hopefull all  
are in this region

Δl

Key idea:  
Instead of scaling entry values, only scale the residues modulo-p

Recursion: scaling residues

Key idea:  
Instead of scaling entry values, only scale the residues modulo-p

Recursion: scaling residues

• Previously: ,

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⌊

4Ai,k

n1/2
⌋, ⌊

8Ai,k

n1/2
⌋, ⋯⋯ ⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⌊

4Bk,j

n1/2
⌋, ⌊

8Bk,j

n1/2
⌋, ⋯⋯

A(l)
i,k(x, y) = x{0,1} ⋅ y⌊Ai,k/2l⌋ mod p B(l)

k,j(x, y) = x{0,1} ⋅ y⌊Bk,j/2l⌋ mod p

Key idea:  
Instead of scaling entry values, only scale the residues modulo-p

Recursion: scaling residues

• Previously: ,

⌊
Ai,k

n1/2
⌋, ⌊

2Ai,k

n1/2
⌋, ⌊

4Ai,k

n1/2
⌋, ⌊

8Ai,k

n1/2
⌋, ⋯⋯ ⌊

Bk,j

n1/2
⌋, ⌊

2Bk,j

n1/2
⌋, ⌊

4Bk,j

n1/2
⌋, ⌊

8Bk,j

n1/2
⌋, ⋯⋯

A(l)
i,k(x, y) = x{0,1} ⋅ y⌊Ai,k/2l⌋ mod p B(l)

k,j(x, y) = x{0,1} ⋅ y⌊Bk,j/2l⌋ mod p

• Now:

 ,

Ai,k = pÃi,k+Ri,k Bk,j = pB̃k,j+Sk,j

⌊
Ri,k

n1/2
⌋, ⌊

2Ri,k

n1/2
⌋, ⌊

4Ri,k

n1/2
⌋, ⌊

8Ri,k

n1/2
⌋, ⋯⋯ ⌊

Sk,j

n1/2
⌋, ⌊

2Sk,j

n1/2
⌋, ⌊

4Sk,j

n1/2
⌋, ⌊

8Sk,j

n1/2
⌋, ⋯⋯

A(l)
i,k(x, y) = x⌊Ri,k/2l⌋−2⌊Ri,k/2l+1⌋ ⋅ y⌊Ri,k/2l+1⌋ B(l)

k,j(x, y) = x⌊Sk,j/2l⌋−2⌊Sk,j/2l+1⌋ ⋅ y⌊Sk,j/2l+1⌋

Key idea:  
Instead of scaling entry values, only scale the residues modulo-p

Recursion: scaling residues

• Now:

Ai,k = pÃi,k+Ri,k Bk,j = pB̃k,j+Sk,j

A(l)
i,k(x, y) = x⌊Ri,k/2l⌋−2⌊Ri,k/2l+1⌋ ⋅ y⌊Ri,k/2l+1⌋ B(l)

k,j(x, y) = x⌊Sk,j/2l⌋−2⌊Sk,j/2l+1⌋ ⋅ y⌊Sk,j/2l+1⌋

• Recursion:

 Compute , and then some extra work

Ci,j = pC̃i,j+Ti,j

⌊Ti,j /2l⌋ = min
1≤k≤n

{⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ∣ | Ãi,k + B̃k,j − C̃i,j | = O(1)} ± O(1)

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)

• Error terms:  
 

 

Compute  
 
find triples s.t. 

 
 
Inductively maintain all such triples

A(l)
i,k(x, y) = x⌊Ri,k/2l⌋−2⌊Ri,k/2l+1⌋ ⋅ y⌊Ri,k/2l+1⌋

B(l)
k,j(x, y) = x⌊Sk,j/2l⌋−2⌊Sk,j/2l+1⌋ ⋅ y⌊Sk,j/2l+1⌋

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Recursion: scaling residues
Key idea:  
Instead of scaling entry values, only scale the residues modulo-p

• Previous issues fixed:

• Want to find
 

 
Need to know triples: 

 

 
Already have maintained: 

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)

⌊Ti,j /2l+1⌋ = ⌊Ri,k /2l+1⌋ + ⌊Sk,j /2l+1⌋± O(1)
2

⌊Ti,j /2l+1⌋ = ⌊Ri,k /2l+1⌋ + ⌊Sk,j /2l+1⌋ ± O(1)

• Error terms:  
 

 

Compute  
 
find triples s.t. 

 
 
Inductively maintain all such triples

A(l)
i,k(x, y) = x⌊Ri,k/2l⌋−2⌊Ri,k/2l+1⌋ ⋅ y⌊Ri,k/2l+1⌋

B(l)
k,j(x, y) = x⌊Sk,j/2l⌋−2⌊Sk,j/2l+1⌋ ⋅ y⌊Sk,j/2l+1⌋

C(l)(x, y) = A(l)(x, y) ⋅ B(l)(x, y)

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Recursion: scaling residues
Key idea:  
Instead of scaling entry values, only scale the residues modulo-p

Recursion: finding error terms
Basic idea:  
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Goal:

• At each recursion level, find all
 such that:

•  

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Recursion: finding error terms
Basic idea:  
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Sanity check:

• Even without recursion (l=0), 
the probability that

 is

• Need recursion to locate all k’s

Ti,j = Ri,k + Sk,j Õ(n−1/2)

Goal:

• At each recursion level, find all
 such that:

•  

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Recursion: finding error terms
Basic idea:  
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Total number of error terms:

•  
or  

• Probability is at most  
Total #errors =

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)

Goal:

• At each recursion level, find all
 such that:

•  

(i, j, k) ∈ [n]3

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)
| Ãi,k + B̃k,j − C̃i,j | ≠ O(1)

Recursion: finding error terms
Basic idea:  
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Total number of error terms:

•  
or  

• Probability is at most  
Total #errors =

⌊Ti,j /2l⌋ = ⌊Ri,k /2l⌋ + ⌊Sk,j /2l⌋ ± O(1)

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)

Extra factor of 2l

k

×
i

k

Key observation: 
Since B is monotone, we can partition each row

 into intervals, such that
entries in the each interval are the same. Group
error terms as index-interval triples

{⌊Sk,j /2l⌋}1≤ j≤n O(n/2l)

(i, k, [a, b])

Recursion: finding error terms
Index-interval triples: 
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Total #Index-interval triples:

•

• Probability is at most  
Total #error terms =

• Partition each B-row into intervals

• Total #index-interval triples =

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)

O(n/2l)

Õ(n3/p)

Recursion: finding error terms
Index-interval triples: 
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Total #Index-interval triples:

•

• Probability is at most  
Total #error terms =

• Partition each B-row into intervals

• Total #index-interval triples =

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)

O(n/2l)

Õ(n3/p)

k

×
i

k

Recursion: finding error terms
Index-interval triples: 
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Total #Index-interval triples:

•

• Probability is at most  
Total #error terms =

• Partition each B-row into intervals

• Total #index-interval triples =

|Ai,k + Bk,j − Ci,j | ≡ O(2l) mod p

Õ(2l ⋅ n−1/2)
Õ(2l ⋅ n3/p)

O(n/2l)

Õ(n3/p)

k

×
i

k

Subtracting error terms: 
For any , use segment-tree data structures 
  

simultaneously for all , as all are equal

(i, k, [a, b])
C(l)

i,j (x, y) ← C(l)
i,j (x, y) − A(l)

i,k(x, y) ⋅ B(l)
k,j(x, y)

j ∈ [a, b] B(l)
k,j

Recursion: finding error terms
Index-interval triples: 
Use the fact that is a uniformly random primep ∈ [n1/2,2n1/2]

Maintaining index-interval triples recursively:

• Triples on the -level is a refinement of triples on the -level{(i, k, [a, b])} l (l + 1)

l + 1 l + 1 l + 1

l l l l l l

Thanks for listening

