Constant Approximation of Min-Distances in Near-Linear Time

Shiri Chechik

Tianyi Zhang

 $G = (V, E, \omega)$ be a weighted directed graph

Distance parameters: diameter, radius, eccentricity

- Eccentricity of any vertex = Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

 $G = (V, E, \omega)$ be a weighted directed graph

Distance parameters: diameter, radius, eccentricity

- Eccentricity of any vertex
 = Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

 $G = (V, E, \omega)$ be a weighted directed graph

Distance parameters: diameter, radius, eccentricity

- Eccentricity of any vertex
 Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

 $G = (V, E, \omega)$ be a weighted directed graph

Distance parameters: diameter, radius, eccentricity

- Eccentricity of any vertex
 Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

Diameter = max Ecc

Variants of distances in digraphs

- In directed graphs, $dist(u, v) \neq dist(v, u)$ not symmetric
- Round-trip distance = dist(u, v) + dist(v, u)
- Max-distance = $max{dist(u, v), dist(v, u)}$
- Min-distance = min{dist(u, v), dist(v, u)}

Exactly computing distance parameters (ecc, diam, rad) requires $m^{2-\epsilon}$ time under SETH and HSC

Faster algorithms need to allow approximations

Variants of distances in digraphs

- Rndtrip-dist & max-dist satisfy triangle inequalities
- Min-dist violates triangle inequalities

round-trip distance

 $rnd(u, v) + rnd(v, w) \ge rnd(u, w)$

min-distance

 $\frac{\min-\text{dist}(u, v) + \min-\text{dist}(v, w)}{<\min-\text{dist}(u, w) = \infty}$

Variants of distances in digraphs

- Rndtrip-dist & max-dist satisfy triangle inequalities
- Min-dist violates triangle inequalities

round-trip distance

Ecc(v) is 2-approx of round-trip diameter

min-distance

Ecc(v) is ∞ -approx of min-diameter

A short history

reference	which param?	approx	runtime	input type
AVW, 2016	min-diameter	2	m	acyclic
AVW, 2016	min-radius	3	<i>mn</i> ^{1/2}	acyclic
DK, 2021	min-radius	k	$mn^{1/k}$	acyclic
DK, 2021	min- eccentricities	k + 0.001	$mn^{1/k}$	acyclic
open	all param	O(1)	m	acyclic

A short history

reference	which param?	approx	runtime	input type
DWV+, 2019	min-diameter	4k-5	<i>mn</i> ^{1/k}	general
DWV+, 2019	min-radius	3	mn ^{1/2}	general
DWV+, 2019	min- eccentricities	5.001	mn ^{1/2}	general
open	any param	O(1)	m	general

reference	which param?	approx	runtime	input type
open	all/any param	O(1)	m	acyclic / general
new	min-diameter	4k-5 vs 4	mn ^{1/k} vs m	general
new	min-radius	3 vs 4	<i>mn</i> ^{1/2} vs m	general
new	min- eccentricities	5.001	<i>mn</i> ^{1/2} vs m	general
new	min-radius	k vs 3	mn ^{1/k} vs m	acyclic
new	min- eccentricities	k+0.01 vs 3.01	mn ^{1/k} vs m	acyclic

Our results

This talk	reference	which param?	approx	runtime	input type
	open	all/any param	O(1)	m	acyclic / general
	new	min-diameter	4k-5 vs 4	mn ^{1/k} vs m	general
	new	min-radius	3 vs 4	<i>mn</i> ^{1/2} vs m	general
	new	min- eccentricities	5.001	<i>mn</i> ^{1/2} vs m	general
	new	min-radius	k vs 3	<i>mn^{1/k}</i> vs m	acyclic
	new	min- eccentricities	k+0.01 vs 3.01	mn ^{1/k} vs m	acyclic

Our results

Min-diameter in general digraphs

Goal: decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = \{u \mid dist(t, u) < D/4\}$ $U_{-} = \{u \mid dist(u, t) < D/4\}$
- 4. Recurse on $G[U_+]$ and $G[U_-]$

<u>Goal:</u> decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = \{u \mid dist(t, u) < D/4\}$ $U_{-} = \{u \mid dist(u, t) < D/4\}$
- 4. Recurse on $G[U_+]$ and $G[U_-]$

Pick a random vertex

<u>Goal:</u> decide min-diam <D or >D/4

1. Pick a random vertex t

2. Compute SSSP in to and from t

- 3. Define two sets: $U_{+} = \{u \mid dist(t, u) < D/4\}$ $U_{-} = \{u \mid dist(u, t) < D/4\}$
- 4. Recurse on $G[U_+]$ and $G[U_-]$

<u>Goal:</u> decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = \{ u \mid dist(t, u) < D/4 \}$ $U_{-} = \{ u \mid dist(u, t) < D/4 \}$
- 4. Recurse on $G[U_+]$ and $G[U_-]$

<u>Goal:</u> decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = I_{f}U_{+} U_{+}U_{-}U_{+} VD/4$ $U_{+} U_{+}U_{-}U_{+} VD/4$ $U_{+} U_{+}U_{-}U_{+} VD/4$
- 4. Recurse on $G[U_+]$ and $G[U_-]$

 \mathbf{O}

<u>Goal:</u> decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = \{ If | U_{+} \cup U_{-}) = V/4 \}$ Endpoints of min-diam should belong to the same side
- 4. Recurse on $G[U_+]$ and $G[U_-]$

The min-distance between U_+ and U_- is at most D/2

<u>Goal:</u> decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = \{ u \mid dist(t, u) < D/4 \}$ $U_{-} = \{ u \mid dist(u, t) < D/4 \}$
- **4. Recurse on** $G[U_+]$ **and** $G[U_-]$

Recursion on $G[U_+]$

 \mathbf{O}

<u>Goal:</u> decide min-diam <D or >D/4

- 1. Pick a random vertex t
- 2. Compute SSSP in to and from t
- 3. Define two sets: $U_{+} = \{ u \mid dist(t, u) < D/4 \}$ $U_{-} = \{ u \mid dist(u, t) < D/4 \}$
- 4. Recurse on $G[U_+]$ and $G[U_-]$

Recursion on $G[U_]$

 \mathbf{O}

Some issues:

• Soundness

A large min-distance within $G[U_+]$ does not imply a large min-distance in G[V]

• Runtime

 $G[U_+]$ and $G[U_-]$ are usually intersecting, runtime can be high

Some issues:

Soundness

A large min-distance within $G[U_+]$ does not imply a large min-distance in G[V]

• Runtime

 $G[U_+]$ and $G[U_-]$ are usually intersecting, runtime can be high

Some issues:

• Soundness

A large min-distance within $G[U_+]$ does not imply a large min-distance in G[V]

• Runtime

 $G[U_+]$ and $G[U_-]$ are usually intersecting, runtime can be high

A large intersection

- A large min-distance within $G[U_+]$ does not imply a large min-distance in G[V]

- A large min-distance within $G[U_+]$ does not imply a large min-distance in G[V]
- Observation Distance from t to z is < D/4 + D/4

- A large min-distance within $G[U_+]$ does not imply a large min-distance in G[V]
- Observation Distance from t to z is < D/4 + D/4

• Idea

Add more vertices in the recursion

 $S_{+} = \{ u \mid dist(t, u) < D/2 \}$

This preserves pairwise distances for

 $U_{+} = \{ u \mid dist(t, u) < D/4 \}$

- Two different vertex sets: $S_{+} = \{ u \mid dist(t, u) < D/2 \}$ $U_{+} = \{ u \mid dist(t, u) < D/4 \}$
- $G[S_+]$ only preserves pairwise distances among U_+ , not the entire S_+
- In general, the recursive algorithm
 needs to take two parameters (S, U)
 such that U ⊆ S ⊆ V

- Two different vertex sets: $S_{+} = \{ u \mid dist(t, u) < D/2 \}$ $U_{+} = \{u \mid dist(t, u) < D/4\}$
- $G[S_+]$ only preserves pairwise distances among U_+ , not the entire S_+
- In general, the recursive algorithm needs to take two parameters (S, U)such that $U \subseteq S \subseteq V$

G[S] preserves pairwise distances among U

- Two different vertex sets: $S_{+} = \{u \mid dist(t, u) < D/2\}$ $U_{+} = \{u \mid dist(t, u) < D/4\}$
- $G[S_+]$ only preserves pairwise distances among U_+ , not the entire S_+
- In general, the recursive algorithm needs to take two parameters (S, U)such that $U \subseteq S \subseteq V$

 $G[S_i]$ preserves pairwise distances among U_i

• S_+ and S_- are usually intersecting, so the runtime can be high $S_{+} = \{ u \mid dist(t, u) < D/2 \}$ $S_{-} = \{u \mid dist(u, t) < D/2\}$

- S_+ and S_- are usually intersecting, so the runtime can be high $S_{+} = \{ u \mid dist(t, u) < D/2 \}$ $S_{-} = \{u \mid dist(u, t) < D/2\}$
- Enforce disjointness by recursing on instances $(S_{+} \setminus S_{-}, U_{+}) \& (S_{-} \setminus S_{+}, U_{-})$

- S_+ and S_- are usually intersecting, so the runtime can be high $S_{+} = \{ u \mid dist(t, u) < D/2 \}$ $S_{-} = \{u \mid dist(u, t) < D/2\}$
- Enforce disjointness by recursing on instances $(S_{+} \setminus S_{-}, U_{+}) \& (S_{-} \setminus S_{+}, U_{-})$
- How about soundness again?

- Enforce disjointness by recursing on instances $(S_+ \backslash S_-, U_+) \& (S_- \backslash S_+, U_-)$
- How about soundness again? x, y such that $\operatorname{dist}_{G[S_+ \setminus S_-]}^{\min}(x, y) = \infty$

X

 U_{\perp}

- Enforce disjointness by recursing on instances $(S_+ \backslash S_-, U_+) \& (S_- \backslash S_+, U_-)$
- How about soundness again? x, y such that $\operatorname{dist}_{G[S_+ \setminus S_-]}^{\min}(x, y) = \infty$ but $\operatorname{dist}_{G[S_+]}(x, y) < D/4$

A shortcut through $G[S_+ \cap S_-]$ of length < D/4

X

 U_+

- Enforce disjointness by recursing on instances $(S_{+} \setminus S_{-}, U_{+}) \& (S_{-} \setminus S_{+}, U_{-})$
- How about soundness again? x, y such that $\operatorname{dist}_{G[S_{\perp} \setminus S_{-}]}^{\min}(x, y) = \infty$ but dist_{*G*[*S*_⊥]}(*x*, *y*) < *D*/4
- $dist(x, t) \le dist(x, z) + dist(z, t) < 3D/4$

 $U_{
sigma}$

- Enforce disjointness by recursing on instances $(S_{+} \setminus S_{-}, U_{+}) \& (S_{-} \setminus S_{+}, U_{-})$
- How about soundness again? x, y such that $\operatorname{dist}_{G[S_{\perp} \setminus S_{-}]}^{\min}(x, y) = \infty$ but dist_{*G*[*S*_⊥]}(*x*, *y*) < *D*/4
- $dist(x, t) \le dist(x, z) + dist(z, t) < 3D/4$ dist(x, t) + dist(t, y) < D
- Recurse on $(S_+ \setminus S_-, C_+)$ $C_{+} = U_{+} \cap \{x \mid dist(x, t) \ge 3D/4\}$

U_+ Already rule out that x, y could be endpoints of diameter by single-source distances from t

 \mathbf{O}

On input pair (S, C)

- 1. Pick a random vertex $t \in C$
- 2. Compute SSSP in to and from t

3. Define sets: $S_{+} = \{x \mid dist(t, x) < D/2\}$ $C_{+} = C \cap \{x \mid \operatorname{dist}(t, x) < D/4, \operatorname{dist}(x, t) \ge 3D/4\}$

4. Recurse on $(S_+ \setminus S_-, C_+ \setminus S_-)$ and symmetrically $(S_{-} \setminus S_{+}, C_{-} \setminus S_{+})$

The recursive algorithm vertex

On input pair (S, C)

- **1.** Pick a random vertex $t \in C$
- 2. Compute SSSP in to and from t

3. Define sets: $S_{+} = \{x \mid dist(t, x) < D/2\}$ $C_{+} = C \cap \{x \mid \operatorname{dist}(t, x) < D/4, \operatorname{dist}(x, t) \ge 3D/4\}$

4. Recurse on $(S_+ \setminus S_-, C_+ \setminus S_-)$ and symmetrically $(S_{-} \setminus S_{+}, C_{-} \setminus S_{+})$

On input pair (S, C)

1. Pick a random vertex $t \in C$

2. Compute SSSP in to and from t

3. Define sets:

 $S_{+} = \{ x \mid \text{dist}(t, x) < D/2 \}$ $C_{+} = C \cap \{ x \mid \text{dist}(t, x) < D/4, \text{dist}(x, t) \ge 3D/4 \}$

4. Recurse on $(S_+ \setminus S_-, C_+ \setminus S_-)$ and symmetrically $(S_- \setminus S_+, C_- \setminus S_+)$

On input pair (S, C)

- 1. Pick a random vertex $t \in C$
- 2. Compute SSSP in to and from t
- 3. Define sets:

 $S_{+} = \{x \mid dist(t, x) < D/2\}$ $C_{+} = C \cap \{x \mid \operatorname{dist}(t, x) < D/4, \operatorname{dist}(x, t) \ge 3D/4\}$

4. Recurse on $(S_+ \setminus S_-, C_+ \setminus S_-)$ and symmetrically $(S_{-} \setminus S_{+}, C_{-} \setminus S_{+})$

On input pair (S, C)

- 1. Pick a random vertex $t \in C$
- 2. Compute SSSP in to and from t
- 3. Define sets:

 $S_{+} = \{x \mid dist(t, x) < D/2\}$ $C_{+} = C \cap \{x \mid \operatorname{dist}(t, x) < D/4, \operatorname{dist}(x, t) \ge 3D/4\}$

4. Recurse on $(S_+ \setminus S_-, C_+ \setminus S_-)$ and symmetrically $(S_{-} \setminus S_{+}, C_{-} \setminus S_{+})$

 $O(\log n)$ -approx min-radius in general digraphs

Goal: decide if the min-radius is $< O(R \log n)$ or >R

Goal: decide if the min-radius is $< O(R \log n)$ or >R

Pick a random vertex

C

S

Goal: decide if the min-radius is $< O(R \log n)$ or >R

1. Define four sets $C_{+,-}, S_{+,-}$ $C_{+} = \{u \mid \text{dist}(t, u) < R\}$ $S_{+} = \{u \mid \text{dist}(t, u) < 2R\}$

Goal: decide if the min-radius is $< O(R \log n)$ or >R

1. Define four sets $C_{+,-}, S_{+,-}$ $C_+ = \{ u \mid \operatorname{dist}(t, u) < \mathbf{R} \}$ $S_{+} = \{ u \mid dist(t, u) < 2R \}$

2.

If $S_+ \cup S_- = V$ t is a center with small radius

An empty area

Goal: decide if the min-radius is $< O(R \log n)$ or >R

- 1. Define four sets $C_{+,-}, S_{+,-}$ $C_{+} = \{u \mid \text{dist}(t, u) < R\}$ $S_{+} = \{u \mid \text{dist}(t, u) < 2R\}$
- **2.** Define $W = V \setminus (S_+ \cup S_-) \neq \emptyset$

<u>Goal</u>: decide if the min-radius is $< O(R \log n)$ or >R

- 1. Define four sets $C_{+,-}, S_{+,-}$ $C_{+} = \{u \mid \text{dist}(t, u) < R\}$ $S_{+} = \{u \mid \text{dist}(t, u) < 2R\}$
- 2. Define $W = V \setminus (S_+ \cup S_-) \neq \emptyset$
- 3. Contract S_{-} into a single node, and recurse on the contracted graph (symmetrically for S_{+})

<u>Goal</u>: decide if the min-radius is $< O(R \log n)$ or >R

- 1. Define four sets $C_{+,-}, S_{+,-}$ $C_{+} = \{u \mid \text{dist}(t, u) < R\}$ $S_{+} = \{u \mid \text{dist}(t, u) < 2R\}$
- 2. Define $W = V \setminus (S_+ \cup S_-) \neq \emptyset$
- 3. Contract S_{-} into a single node, and recurse on the contracted graph (symmetrically for S_{+})

Runtime issue: $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

Vertex set W

Runtime issue: $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

Runtime issue: $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

Runtime issue: $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

Runtime issue: $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

Runtime issue: $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

 A single vertex could appear everywhere on the recursion tree

recursion tree

<u>**Runtime issue:**</u> $W = V \setminus (S_+ \cup S_-)$ appears in **both** recursion branches

- A single vertex could appear everywhere on the recursion tree
- **Pruning while recursing:** Every vertex appears in at most two branches on the recursion tree

(Details omitted in this presentation)

Each vertex only appears in at most two branches

Brief sketch of 4-approx of min-radius

Goal: decide if the min-radius is <4R or >R

Cannot use contractions

S

 S_+

 C_+

<u>Goal:</u> decide if the min-radius is <4R or >R

- Cannot use contractions
- Partition $S = S_+ \cup S_-$ Recurse on $(S_+, C_+), (S_-, C_-)$

<u>S</u>____

 S_+

Goal: decide if the min-radius is <4R or >R

- Cannot use contractions
- Partition $S = S_+ \cup S_-$ Recurse on $(S_+, C_+), (S_-, C_-)$
- Impossible to preserve pairwise distances in subgraphs

Shortest paths crossing the border

<u>S</u>_

Goal: decide if the min-radius is <4R or >R

- Cannot use contractions
- Partition $S = S_+ \cup S_-$ Recurse on $(S_+, C_+), (S_-, C_-)$
- **Impossible** to preserve pairwise distances in subgraphs
- Solution: Only preserve some pairs of distances, i.e. $C \times (C \cup T)$

 S_+

Only preserve distances between $C \times (C \cup T)$

 C_+

S

Better approximation ratio in near-linear time?

Min-diam/radius in general digraphs:

Thanks for listening

Further questions

- $3 \text{ in } \tilde{O}(mn^{1/2})$ vs $4 \text{ in } \tilde{O}(m)$