Constant Approximation of Min-Distances in Near-Linear Time

Shiri Chechik
Tianyi Zhang

Distance parameters in graphs

$G=(V, E, \omega)$ be a weighted directed graph
Distance parameters:
diameter, radius, eccentricity

- Eccentricity of any vertex
= Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter $=$ Maximum eccentricity among all vertices

Distance parameters in graphs

$G=(V, E, \omega)$ be a weighted directed graph
Distance parameters:
diameter, radius, eccentricity

- Eccentricity of any vertex = Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

Distance parameters in graphs

$G=(V, E, \omega)$ be a weighted directed graph
Distance parameters:
diameter, radius, eccentricity

- Eccentricity of any vertex
= Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

Distance parameters in graphs

$G=(V, E, \omega)$ be a weighted directed graph
Distance parameters:
diameter, radius, eccentricity

- Eccentricity of any vertex
= Maximum distance to other vertices
- Radius = Minimum eccentricity among all vertices
- Diameter = Maximum eccentricity among all vertices

Variants of distances in digraphs

- In directed graphs, $\operatorname{dist}(u, v) \neq \operatorname{dist}(v, u)$ not symmetric
- Round-trip distance $=\operatorname{dist}(u, v)+\operatorname{dist}(v, u)$
- $\operatorname{Max}-\operatorname{distance}=\max \{\operatorname{dist}(u, v), \operatorname{dist}(v, u)\}$
- Min-distance $=\min \{\operatorname{dist}(u, v), \operatorname{dist}(v, u)\}$

Exactly computing distance parameters (ecc, diam, rad) requires $m^{2-\epsilon}$ time under SETH and HSC

Faster algorithms need to allow approximations

Variants of distances in digraphs

- Rndtrip-dist \& max-dist satisfy triangle inequalities
- Min-dist violates triangle inequalities

round-trip distance
$\operatorname{rnd}(u, v)+\operatorname{rnd}(v, w) \geq \operatorname{rnd}(u, w)$

min-distance
min-dist(u, v) + min-dist(v, w)
$<$ min-dist $(u, w)=\infty$

Variants of distances in digraphs

- Rndtrip-dist \& max-dist satisfy triangle inequalities
- Min-dist violates triangle inequalities

round-trip distance
$\operatorname{Ecc}(\mathrm{v})$ is 2-approx of round-trip diameter

min-distance

A short history

reference	which param?	approx	runtime	input type
AVW, 2016	min-diameter	2	m	acyclic
AVW, 2016	min-radius	3	$m^{1 / 2}$	acyclic
DK, 2021	min-radius	k	$\mathrm{mn}^{1 / k}$	acyclic
DK, 2021	min- eccentricities	$\mathrm{k}+0.001$	$\mathrm{mn}^{1 / k}$	acyclic
open	all param	$\mathrm{O}(1)$	m	acyclic

A short history

reference	which param?	approx	runtime	input type
DWV+, 2019	min-diameter	$4 \mathrm{k}-5$	$m n^{1 / k}$	general
DWV+, 2019	min-radius	3	$m n^{1 / 2}$	general
DWV+, 2019	min- eccentricities	5.001	$m n^{1 / 2}$	general
open	any param	$\mathrm{O}(1)$	m	general

Our results

reference	which param?	approx	runtime	input type
open	all/any param	O(1)	m	acyclic / general
new	min-diameter	$4 \mathrm{k}-5 \mathrm{vs} 4$	$m n^{1 / k}$ vs m	general
new	min-radius	3 vs 4	$m n^{1 / 2}$ vs m	general
new	mineccentricities	5.001	$m n^{1 / 2}$ vs m	general
new	min-radius	k vs 3	$m n^{1 / k}$ vs m	acyclic
new	mineccentricities	$k+0.01$ vs 3.01	$m n^{1 / k}$ vs m	acyclic

Our results

reference	which param?	approx	runtime	input type
open	all/any param	$\mathrm{O}(1)$	m	acyclic / general
This talk	new	min-diameter	$4 \mathrm{k}-5 \mathrm{vs} 4$	$\mathrm{mn}^{1 / k} \mathrm{vs} \mathrm{m}$
new	min-radius	3 vs 4	$\mathrm{mn}^{1 / 2} \mathrm{vs} \mathrm{m}$	general
new	min- eccentricities	5.001	$\mathrm{mn}^{1 / 2} \mathrm{vs} \mathrm{m}$	general
new	min-radius	$\mathrm{k} \quad \mathrm{vs} \quad 3$	$\mathrm{mn}^{1 / k} \mathrm{vs} \mathrm{m}$	acyclic
new	min- eccentricities	$\mathrm{k}+0.01 \mathrm{vs} 3.01$	$\mathrm{mn}^{1 / k} \mathrm{vs} \mathrm{m}$	acyclic

Min-diameter in general digraphs

First attempt

Goal: decide min-diam <D or >D/4

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
& U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\} \\
& U_{-}=\{u \mid \operatorname{dist}(u, t)<D / 4\}
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam $<$ D or $>\mathrm{D} / 4$

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
& U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\} \\
& U_{-}=\{u \mid \operatorname{dist}(u, t)<D / 4\}
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam <D or $>\mathrm{D} / 4$

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
& U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\} \\
& U_{-}=\{u \mid \operatorname{dist}(u, t)<D / 4\}
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam <D or >D/4

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
U_{+} & =\{u \mid \operatorname{dist}(t, u)<D / 4\} \\
U_{-} & =\{u \mid \operatorname{dist}(u, t)<D / 4\}
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam $<$ D or $>$ D/4

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
& U_{+}=\text {If } U_{+} \cup U_{-} \neq V D / 4 \\
& \text { then claim min-diam }>\mathrm{D} / 4
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam <D or >D/4

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\text { If } U_{+} \cup U_{-}=V
$$

Endpoints of min-diam should belong to the same side
4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam <D or >D/4

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
U_{+} & =\{u \mid \operatorname{dist}(t, u)<D / 4\} \\
U_{-} & =\{u \mid \operatorname{dist}(u, t)<D / 4\}
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Goal: decide min-diam <D or >D/4

1. Pick a random vertex t
2. Compute SSSP in to and from t
3. Define two sets:

$$
\begin{aligned}
U_{+} & =\{u \mid \operatorname{dist}(t, u)<D / 4\} \\
U_{-} & =\{u \mid \operatorname{dist}(u, t)<D / 4\}
\end{aligned}
$$

4. Recurse on $G\left[U_{+}\right]$and $G\left[U_{-}\right]$

First attempt

Some issues:

- Soundness

A large min-distance within $G\left[U_{+}\right]$ does not imply a large min-distance in $G[V]$

- Runtime $G\left[U_{+}\right]$and $G\left[U_{-}\right]$are usually intersecting, runtime can be high

First attempt

Some issues:

- Soundness

A large min-distance within $G\left[U_{+}\right]$ does not imply a large min-distance in $G[V]$

- Runtime $G\left[U_{+}\right]$and $G\left[U_{-}\right]$are usually intersecting, runtime can be high

First attempt

Some issues:

- Soundness A large min-distance within $G\left[U_{+}\right]$ does not imply a large min-distance in $G[V]$
- Runtime $G\left[U_{+}\right]$and $G\left[U_{-}\right]$are usually intersecting, runtime can be high

Soundness issue

- A large min-distance within $G\left[U_{+}\right]$ does not imply a large min-distance in $G[V]$

Soundness issue

- A large min-distance within $G\left[U_{+}\right]$ does not imply a large min-distance in G[V]
- Observation Distance from t to z is < D/4 + D/4

Soundness issue

- A large min-distance within $G\left[U_{+}\right]$ does not imply a large min-distance in $G[V]$
- Observation Distance from t to z is < D/4 + D/4
- Idea

Add more vertices in the recursion
$S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\}$
This preserves pairwise distances for

$$
U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\}
$$

Soundness issue

- Two different vertex sets:

$$
\begin{aligned}
& S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\} \\
& U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\}
\end{aligned}
$$

- $G\left[S_{+}\right]$only preserves pairwise distances among U_{+}, not the entire S_{+}
- In general, the recursive algorithm needs to take two parameters (S, U) such that $U \subseteq S \subseteq V$

Soundness issue

- Two different vertex sets:

$$
\begin{aligned}
& S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\} \\
& U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\}
\end{aligned}
$$

- $G\left[S_{+}\right]$only preserves pairwise distances among U_{+}, not the entire S_{+}
$G[S]$ preserves pairwise distances among U
- In general, the recursive algorithm needs to take two parameters (S, U) such that $U \subseteq S \subseteq V$

Soundness issue

- Two different vertex sets:

$$
\begin{aligned}
& S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\} \\
& U_{+}=\{u \mid \operatorname{dist}(t, u)<D / 4\}
\end{aligned}
$$

- $G\left[S_{+}\right]$only preserves pairwise distances among U_{+}, not the entire S_{+}
- In general, the recursive algorithm needs to take two parameters (S, U) such that $U \subseteq S \subseteq V$

$G\left[S_{i}\right]$ preserves pairwise distances among U_{i}

Runtime issue

- S_{+}and S_{-}are usually intersecting, so the runtime can be high

$$
\begin{aligned}
& S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\} \\
& S_{-}=\{u \mid \operatorname{dist}(u, t)<D / 2\}
\end{aligned}
$$

Runtime issue

- S_{+}and S_{-}are usually intersecting, so the runtime can be high
$S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\}$
$S_{-}=\{u \mid \operatorname{dist}(u, t)<D / 2\}$
- Enforce disjointness by recursing on instances $\left(S_{+} \backslash S_{-}, U_{+}\right) \&\left(S_{-} \backslash S_{+}, U_{-}\right)$

Runtime issue

- S_{+}and S_{-}are usually intersecting, so the runtime can be high
$S_{+}=\{u \mid \operatorname{dist}(t, u)<D / 2\}$
$S_{-}=\{u \mid \operatorname{dist}(u, t)<D / 2\}$
- Enforce disjointness by recursing on instances $\left(S_{+} \backslash S_{-}, U_{+}\right) \&\left(S_{-} \backslash S_{+}, U_{-}\right)$
- How about soundness again?

Runtime issue

- Enforce disjointness by recursing on instances $\left(S_{+} \backslash S_{-}, U_{+}\right) \&\left(S_{-} \backslash S_{+}, U_{-}\right)$
- How about soundness again?
x , y such that $\operatorname{dist}_{G\left[S_{+} \backslash S_{-}\right]}^{\min }(x, y)=\infty$

Runtime issue

- Enforce disjointness by recursing on instances $\left(S_{+} \backslash S_{-}, U_{+}\right) \&\left(S_{-} \backslash S_{+}, U_{-}\right)$
- How about soundness again?
x, y such that $\operatorname{dist}_{G\left[S_{+} \backslash S_{-}\right]}^{\min }(x, y)=\infty$ but $\operatorname{dist}_{G\left[S_{+}\right]}(x, y)<D / 4$

S_{+}

Runtime issue

- Enforce disjointness by recursing on instances $\left(S_{+} \backslash S_{-}, U_{+}\right) \&\left(S_{-} \backslash S_{+}, U_{-}\right)$
- How about soundness again?
x, y such that $\operatorname{dist}_{G\left[S_{+} \backslash S_{-}\right]}^{\min }(x, y)=\infty$ but $\operatorname{dist}_{G\left[S_{+}\right]}(x, y)<D / 4$
- $\operatorname{dist}(x, t) \leq \operatorname{dist}(x, z)+\operatorname{dist}(z, t)<3 D / 4$

Runtinne ise ise

- Enforce disjointness by recursing on instances $\left(S_{+} \backslash S_{-}, U_{+}\right) \&\left(S_{-} \backslash S_{+}, U_{-}\right)$
- How about soundness again?
x, y such that $\operatorname{dist}_{G\left[S_{+} \backslash S_{-}\right]}^{\min }(x, y)=\infty$ but $\operatorname{dist}_{G\left[S_{+}\right]}(x, y)<D / 4$
- $\operatorname{dist}(x, t) \leq \operatorname{dist}(x, z)+\operatorname{dist}(z, t)<3 D / 4$ $\operatorname{dist}(x, t)+\operatorname{dist}(t, y)<D$
- Recurse on $\left(S_{+} \backslash S_{-}, C_{+}\right)$

The recursive algorithm

On input pair (S, C)

1. Pick a random vertex $t \in C$
2. Compute SSSP in to and from t
3. Define sets:
$S_{+}=\{x \mid \operatorname{dist}(t, x)<D / 2\}$
$C_{+}=C \cap\{x \mid \operatorname{dist}(t, x)<D / 4, \operatorname{dist}(x, t) \geq 3 D / 4\}$
4. Recurse on ($S_{+} \backslash S_{-}, C_{+} \backslash S_{-}$) and symmetrically $\left(S_{-} \backslash S_{+}, C_{-} \backslash S_{+}\right)$

The recursive algorithm

On input pair (S, C)

1. Pick a random vertex $t \in C$
2. Compute SSSP in to and from t
3. Define sets:

$$
\begin{aligned}
& S_{+}=\{x \mid \operatorname{dist}(t, x)<D / 2\} \\
& C_{+}=C \cap\{x \mid \operatorname{dist}(t, x)<D / 4, \operatorname{dist}(x, t) \geq 3 D / 4\}
\end{aligned}
$$

4. Recurse on ($S_{+} \backslash S_{-}, C_{+} \backslash S_{-}$) and symmetrically $\left(S_{-} \backslash S_{+}, C_{-} \backslash S_{+}\right)$

The recursive algorithm

On input pair (S, C)

1. Pick a random vertex $t \in C$
2. Compute SSSP in to and from \mathbf{t}
3. Define sets:
$S_{+}=\{x \mid \operatorname{dist}(t, x)<D / 2\}$
$C_{+}=C \cap\{x \mid \operatorname{dist}(t, x)<D / 4, \operatorname{dist}(x, t) \geq 3 D / 4\}$
4. Recurse on ($S_{+} \backslash S_{-}, C_{+} \backslash S_{-}$) and symmetrically $\left(S_{-} \backslash S_{+}, C_{-} \backslash S_{+}\right)$

The recursive algorithm

On input pair (S, C)

1. Pick a random vertex $t \in C$
2. Compute SSSP in to and from t
3. Define sets:

$$
\begin{aligned}
& S_{+}=\{x \mid \operatorname{dist}(t, x)<D / 2\} \\
& C_{+}=C \cap\{x \mid \operatorname{dist}(t, x)<D / 4, \operatorname{dist}(x, t) \geq 3 D / 4\}
\end{aligned}
$$

4. Recurse on $\left(S_{+} \backslash S_{-}, C_{+} \backslash S_{-}\right)$ and symmetrically $\left(S_{-} \backslash S_{+}, C_{-} \backslash S_{+}\right)$

The recursive algorithm

On input pair (S, C)

1. Pick a random vertex $t \in C$
2. Compute SSSP in to and from t
3. Define sets:

$$
\begin{aligned}
& S_{+}=\{x \mid \operatorname{dist}(t, x)<D / 2\} \\
& C_{+}=C \cap\{x \mid \operatorname{dist}(t, x)<D / 4, \operatorname{dist}(x, t) \geq 3 D / 4\}
\end{aligned}
$$

4. Recurse on $\left(S_{+} \backslash S_{-}, C_{+} \backslash S_{-}\right)$ and symmetrically $\left(S_{-} \backslash S_{+}, C_{-} \backslash S_{+}\right)$

$O(\log n)$-approx min-radius in general digraphs

Contraction \& Recurse

Goal: decide if the min-radius is
$<O(R \log n)$ or $>R$

Contraction \& Recurse

Goal: decide if the min-radius is
$<O(R \log n)$ or $>R$
C

Pick a random vertex
S

Contraction \& Recurse

Goal: decide if the min-radius is

$$
<O(R \log n) \text { or }>\mathrm{R}
$$

1. Define four sets $C_{+,-}, S_{+,-}$

$$
\begin{aligned}
& C_{+}=\{u \mid \operatorname{dist}(t, u)<R\} \\
& S_{+}=\{u \mid \operatorname{dist}(t, u)<2 R\}
\end{aligned}
$$

Contraction \& Recurse

Goal: decide if the min-radius is

$$
<O(R \log n) \text { or }>\mathrm{R}
$$

1. Define four sets $C_{+,-}, S_{+,-}$

$$
\begin{aligned}
& C_{+}=\{u \mid \operatorname{dist}(t, u)<R\} \\
& S_{+}=\{u \mid \operatorname{dist}(t, u)<2 R\}
\end{aligned}
$$

2.

$$
\begin{gathered}
\text { If } S_{+} \cup S_{-}=V \\
\mathrm{t} \text { is a center with small radius }
\end{gathered}
$$

Contraction \& Recurse

Goal: decide if the min-radius is

$$
<O(R \log n) \text { or }>R
$$

1. Define four sets $C_{+,-}, S_{+,-}$

$$
\begin{aligned}
& C_{+}=\{u \mid \operatorname{dist}(t, u)<R\} \\
& S_{+}=\{u \mid \operatorname{dist}(t, u)<2 R\}
\end{aligned}
$$

2. Define $W=V \backslash\left(S_{+} \cup S_{-}\right) \neq \varnothing$

Contraction \& Recurse

Goal: decide if the min-radius is $<O(R \log n)$ or $>R$

1. Define four sets $C_{+,-}, S_{+,-}$

$$
\begin{aligned}
& C_{+}=\{u \mid \operatorname{dist}(t, u)<R\} \\
& S_{+}=\{u \mid \operatorname{dist}(t, u)<2 R\}
\end{aligned}
$$

2. Define $W=V \backslash\left(S_{+} \cup S_{-}\right) \neq \varnothing$
3. Contract S_{-}into a single node, and recurse on the contracted
 graph (symmetrically for S_{+})

Contraction \& Recurse

Goal: decide if the min-radius is $<O(R \log n)$ or $>R$

1. Define four sets $C_{+,-}, S_{+,-}$

$$
\begin{aligned}
& C_{+}=\{u \mid \operatorname{dist}(t, u)<R\} \\
& S_{+}=\{u \mid \operatorname{dist}(t, u)<2 R\}
\end{aligned}
$$

2. Define $W=V \backslash\left(S_{+} \cup S_{-}\right) \neq \varnothing$
3. Contract S_{-}into a single node, and recurse on the contracted

> | Contract S_{+}into |
| :---: |
| a single node | graph (symmetrically for S_{+})

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

- A single vertex could appear everywhere on the recursion tree

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

- A single vertex could appear everywhere on the recursion tree

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

- A single vertex could appear everywhere on the recursion tree

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

- A single vertex could appear everywhere on the recursion tree

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

- A single vertex could appear everywhere on the recursion tree

Contraction \& Recurse

Runtime issue: $W=V \backslash\left(S_{+} \cup S_{-}\right)$ appears in both recursion branches

- A single vertex could appear everywhere on the recursion tree
- Pruning while recursing: Every vertex appears in at most two branches on the recursion tree
(Details omitted in this presentation)

Brief sketch of 4-approx of min-radius

Achieving 4-approx

Goal: decide if the min-radius is $<4 R$ or $>R$

- Cannot use contractions

Achieving 4-approx

Goal: decide if the min-radius is $<4 R$ or $>R$

- Cannot use contractions
- Partition $S=S_{+} \cup S_{-}$ Recurse on $\left(S_{+}, C_{+}\right),\left(S_{-}, C_{-}\right)$

Achieving 4-approx

Goal: decide if the min-radius is $<4 R$ or $>R$

- Cannot use contractions
- Partition $S=S_{+} \cup S_{-}$ Recurse on $\left(S_{+}, C_{+}\right),\left(S_{-}, C_{-}\right)$
- Impossible to preserve pairwise distances in subgraphs

Achieving 4-approx

Goal: decide if the min-radius is $<4 R$ or $>R$

- Cannot use contractions
- Partition $S=S_{+} \cup S_{-}$ Recurse on $\left(S_{+}, C_{+}\right),\left(S_{-}, C_{-}\right)$
- Impossible to preserve pairwise distances in subgraphs
- Solution: Only preserve some pairs of distances, i.e. $C \times(C \cup T)$

Further questions

- Better approximation ratio in near-linear time?

Min-diam/radius in general digraphs:

$$
3 \text { in } \tilde{O}\left(m n^{1 / 2}\right) \quad \text { vs } \quad 4 \text { in } \tilde{O}(m)
$$

Thanks for listening

