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Distance parameters in graphs
 be a weighted directed graph


Distance parameters:  
           diameter, radius, eccentricity


• Eccentricity of any vertex 
= Maximum distance to other vertices


• Radius = Minimum eccentricity among all 
vertices


• Diameter = Maximum eccentricity among 
all vertices

G = (V, E, ω)



Distance parameters in graphs

Ecc(v) = max dist

 be a weighted directed graph


Distance parameters:  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Distance parameters in graphs

Radius = min Ecc

 be a weighted directed graph


Distance parameters:  
           diameter, radius, eccentricity


• Eccentricity of any vertex 
= Maximum distance to other vertices


• Radius = Minimum eccentricity among 
all vertices 

• Diameter = Maximum eccentricity among 
all vertices

G = (V, E, ω)



Distance parameters in graphs

Diameter = max Ecc

 be a weighted directed graph


Distance parameters:  
           diameter, radius, eccentricity


• Eccentricity of any vertex 
= Maximum distance to other vertices


• Radius = Minimum eccentricity among all 
vertices


• Diameter = Maximum eccentricity 
among all vertices

G = (V, E, ω)



Variants of distances in digraphs
• In directed graphs,  not symmetric


• Round-trip distance = 


• Max-distance = 


• Min-distance = 


Exactly computing distance parameters (ecc, diam, rad) 
requires  time under SETH and HSC 

Faster algorithms need to allow approximations

dist(u, v) ≠ dist(v, u)

dist(u, v) + dist(v, u)

max{dist(u, v), dist(v, u)}

min{dist(u, v), dist(v, u)}

m2−ϵ



• Rndtrip-dist & max-dist satisfy triangle inequalities


• Min-dist violates triangle inequalities

Variants of distances in digraphs

round-trip distance min-distance
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w
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rnd(u, v) + rnd(v, w)  rnd(u, w)≥ min-dist(u, v) + min-dist(v, w) 
< min-dist(u, w) = ∞



Variants of distances in digraphs

Ecc(v) is 2-approx of round-trip diameter Ecc(v) is -approx of min-diameter∞

• Rndtrip-dist & max-dist satisfy triangle inequalities


• Min-dist violates triangle inequalities

round-trip distance min-distance
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A short history
reference which param? approx runtime input type

AVW, 2016 min-diameter 2 m acyclic

AVW, 2016 min-radius 3 acyclic

DK, 2021 min-radius k acyclic

DK, 2021 min-
eccentricities k + 0.001 acyclic

open all param O(1) m acyclic

mn1/2

mn1/k

mn1/k



A short history
reference which param? approx runtime input type

DWV+, 2019 min-diameter 4k-5 general

DWV+, 2019 min-radius 3 general

DWV+, 2019 min-
eccentricities 5.001 general

open any param O(1) m general

mn1/k

mn1/2

mn1/2



Our results
reference which param? approx runtime input type

open all/any param O(1) m acyclic / general

new min-diameter 4k-5  vs   4          vs   m general

new min-radius 3    vs    4           vs   m general

new min-
eccentricities 5.001           vs   m general

new min-radius k    vs    3           vs   m acyclic

new min-
eccentricities k+0.01  vs   3.01           vs   m acyclic

mn1/k

mn1/2

mn1/2

mn1/k

mn1/k



Our results
reference which param? approx runtime input type

open all/any param O(1) m acyclic / general

new min-diameter 4k-5  vs   4          vs   m general

new min-radius 3    vs    4           vs   m general

new min-
eccentricities 5.001           vs   m general

new min-radius k    vs    3           vs   m acyclic

new min-
eccentricities k+0.01  vs   3.01           vs   m acyclic

mn1/k

mn1/2

mn1/2

mn1/k

mn1/k

This talk



Min-diameter 

in general digraphs



First attempt
Goal: decide min-diam <D or >D/4


1. Pick a random vertex t


2. Compute SSSP in to and from t


3. Define two sets: 




4. Recurse on  and 

U+ = {u ∣ dist(t, u) < D/4}
U− = {u ∣ dist(u, t) < D/4}

G[U+] G[U−]
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1. Pick a random vertex t
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3. Define two sets: 

 

4. Recurse on  and 

U+ = {u ∣ dist(t, u) < D/4}
U− = {u ∣ dist(u, t) < D/4}

G[U+] G[U−]

If 

then claim min-diam >D/4

U+ ∪ U− ≠ V

min-dist > D/4

t



First attempt
Goal: decide min-diam <D or >D/4


1. Pick a random vertex t


2. Compute SSSP in to and from t


3. Define two sets: 

 

4. Recurse on  and 

U+ = {u ∣ dist(t, u) < D/4}
U− = {u ∣ dist(u, t) < D/4}

G[U+] G[U−] The min-distance between  
 and  is at most D/2U+ U−

t

If 

Endpoints of min-diam should 

belong to the same side

U+ ∪ U− = V



First attempt
Goal: decide min-diam <D or >D/4


1. Pick a random vertex t
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4. Recurse on  and 

U+ = {u ∣ dist(t, u) < D/4}
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G[U+] G[U−]
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First attempt

Recursions on  and G[U+] G[U−]

Some issues: 

• Soundness 
A large min-distance within  
does not imply a large min-distance 
in 


• Runtime 
 and  are usually 

intersecting, runtime can be high

G[U+]

G[V]

G[U+] G[U−]

t



First attempt

m
in-dist = ∞

shortcut  through G[U−]
Some issues: 

• Soundness 
A large min-distance within  
does not imply a large min-distance 
in  

• Runtime 
 and  are usually 

intersecting, runtime can be high

G[U+]

G[V]

G[U+] G[U−]

Recursions on  and G[U+] G[U−]

t



First attempt A large intersection

Some issues: 

• Soundness 
A large min-distance within  
does not imply a large min-distance 
in 


• Runtime 
 and  are usually 

intersecting, runtime can be high

G[U+]

G[V]

G[U+] G[U−]

Recursions on  and G[U+] G[U−]

t



Soundness issue

m
in-dist = ∞

• A large min-distance within  
does not imply a large min-distance in 

G[U+]

G[V]

A shortcut through  
of length < D/4

G[U−]

t

x

y

z



Soundness issue

m
in-dist = ∞

• A large min-distance within  
does not imply a large min-distance in 




• Observation  
Distance from t to z is < D/4 + D/4

G[U+]

G[V]

A shortcut through  
of length < D/4

G[U−]

t

x

y

z



Soundness issue
• A large min-distance within  

does not imply a large min-distance in 



• Observation  
Distance from t to z is < D/4 + D/4 

• Idea 
Add more vertices in the recursion  

 
This preserves pairwise distances for  

G[U+]

G[V]

S+ = {u ∣ dist(t, u) < D/2}

U+ = {u ∣ dist(t, u) < D/4}

t

x

y

z

Recurse on a larger graph



• Two different vertex sets: 
 



•  only preserves pairwise 
distances among , not the entire 


• In general, the recursive algorithm 
needs to take two parameters  
such that 

S+ = {u ∣ dist(t, u) < D/2}
U+ = {u ∣ dist(t, u) < D/4}

G[S+]
U+ S+

(S, U)
U ⊆ S ⊆ V

t

x

y

z

Soundness issue



• Two different vertex sets: 
 



•  only preserves pairwise 
distances among , not the entire 


• In general, the recursive algorithm 
needs to take two parameters  
such that 

S+ = {u ∣ dist(t, u) < D/2}
U+ = {u ∣ dist(t, u) < D/4}

G[S+]
U+ S+

(S, U)
U ⊆ S ⊆ V

G[S]
G[U]

 preserves pairwise 
distances among 

G[S]
U

Soundness issue



G[S]
G[U]

G[S1]

G[U1]

G[S2]
G[U2]

two recursions

 preserves pairwise distances among G[Si] Ui

• Two different vertex sets: 
 



•  only preserves pairwise 
distances among , not the entire 


• In general, the recursive algorithm 
needs to take two parameters  
such that 

S+ = {u ∣ dist(t, u) < D/2}
U+ = {u ∣ dist(t, u) < D/4}

G[S+]
U+ S+

(S, U)
U ⊆ S ⊆ V

Soundness issue



Runtime issue A large intersection

•  and  are usually intersecting, so 
the runtime can be high 

 

S+ S−

S+ = {u ∣ dist(t, u) < D/2}
S− = {u ∣ dist(u, t) < D/2}

S+
S−

t



Runtime issue A large intersection

•  and  are usually intersecting, so 
the runtime can be high 

 



• Enforce disjointness by recursing on 
instances  & 

S+ S−

S+ = {u ∣ dist(t, u) < D/2}
S− = {u ∣ dist(u, t) < D/2}

(S+∖S−, U+) (S−∖S+, U−)
S+

S−

t



Runtime issue A large intersection

•  and  are usually intersecting, so 
the runtime can be high 

 



• Enforce disjointness by recursing on 
instances  & 


• How about soundness again?

S+ S−

S+ = {u ∣ dist(t, u) < D/2}
S− = {u ∣ dist(u, t) < D/2}

(S+∖S−, U+) (S−∖S+, U−)
S+

S−

t



Runtime issue

S+

t

U+

m
in

-d
is

t =
 ∞

x

y

• Enforce disjointness by recursing on 
instances  & 


• How about soundness again? 
x, y such that 

(S+∖S−, U+) (S−∖S+, U−)

distmin
G[S+∖S−](x, y) = ∞



Runtime issue

S+

t

U+

m
in

-d
is

t =
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A shortcut through 
 of length < D/4G[S+ ∩ S−]

x

y

• Enforce disjointness by recursing on 
instances  & 


• How about soundness again? 
x, y such that  

but 

(S+∖S−, U+) (S−∖S+, U−)

distmin
G[S+∖S−](x, y) = ∞

distG[S+](x, y) < D/4



Runtime issue

S+

t
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m
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z

• Enforce disjointness by recursing on 
instances  & 


• How about soundness again? 
x, y such that  

but 


•

(S+∖S−, U+) (S−∖S+, U−)

distmin
G[S+∖S−](x, y) = ∞

distG[S+](x, y) < D/4

dist(x, t) ≤ dist(x, z) + dist(z, t) < 3D/4

m
in-dist ≤

D
/2



Runtime issue
• Enforce disjointness by recursing on 

instances  & 


• How about soundness again? 
x, y such that  

but 


•  



• Recurse on  

(S+∖S−, U+) (S−∖S+, U−)

distmin
G[S+∖S−](x, y) = ∞

distG[S+](x, y) < D/4

dist(x, t) ≤ dist(x, z) + dist(z, t) < 3D/4
dist(x, t) + dist(t, y) < D

(S+∖S−, C+)
C+ = U+ ∩ {x ∣ dist(x, t) ≥ 3D/4}

S+

t

U+

m
in

-d
is

t =
 ∞

Already rule out that  
x, y could be endpoints of diameter

by single-source distances from t

x

y

z

m
in-dist ≤

D
/2



The recursive algorithm
On input pair 


1. Pick a random vertex 


2. Compute SSSP in to and from t


3. Define sets: 
 




4. Recurse on   
and symmetrically 

(S, C)

t ∈ C

S+ = {x ∣ dist(t, x) < D/2}
C+ = C ∩ {x ∣ dist(t, x) < D/4, dist(x, t) ≥ 3D/4}

(S+∖S−, C+∖S−)
(S−∖S+, C−∖S+)

C

S



The recursive algorithm
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The recursive algorithm
On input pair 
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-approx min-radius 

in general digraphs

O(log n)



Contraction & Recurse
Goal: decide if the min-radius is

 or >R< O(R log n)

S

C



Contraction & Recurse
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Pick a random vertex
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Contraction & Recurse
Goal: decide if the min-radius is

 or >R


1. Define four sets  
 

< O(R log n)

C+,−, S+,−
C+ = {u ∣ dist(t, u) < R}
S+ = {u ∣ dist(t, u) < 2R}

t
C+ C−

S+
S−



Contraction & Recurse
Goal: decide if the min-radius is

 or >R


1. Define four sets  
 



2.

< O(R log n)

C+,−, S+,−
C+ = {u ∣ dist(t, u) < R}
S+ = {u ∣ dist(t, u) < 2R}

t
C+ C−

S+
S−If 


t is a center with small radius
S+ ∪ S− = V

An empty area



Contraction & Recurse
Goal: decide if the min-radius is

 or >R


1. Define four sets  
 



2. Define 

< O(R log n)

C+,−, S+,−
C+ = {u ∣ dist(t, u) < R}
S+ = {u ∣ dist(t, u) < 2R}

W = V∖(S+ ∪ S−) ≠ ∅

t
C+ C−

S+
S−



Contraction & Recurse
Goal: decide if the min-radius is

 or >R


1. Define four sets  
 



2. Define 


3. Contract  into a single node, 
and recurse on the contracted 
graph (symmetrically for )

< O(R log n)

C+,−, S+,−
C+ = {u ∣ dist(t, u) < R}
S+ = {u ∣ dist(t, u) < 2R}

W = V∖(S+ ∪ S−) ≠ ∅
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S+

Contract  into 
a single node

S−
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Contraction & Recurse
Goal: decide if the min-radius is

 or >R


1. Define four sets  
 



2. Define 


3. Contract  into a single node, 
and recurse on the contracted 
graph (symmetrically for )

< O(R log n)

C+,−, S+,−
C+ = {u ∣ dist(t, u) < R}
S+ = {u ∣ dist(t, u) < 2R}

W = V∖(S+ ∪ S−) ≠ ∅

S−

S+

C−

S−

Contract  into 
a single node

S+



Contraction & Recurse
Runtime issue:  
appears in both recursion branches

W = V∖(S+ ∪ S−) t
C+ C−

S+
S−

Vertex set W



Contraction & Recurse
Runtime issue:  
appears in both recursion branches


• A single vertex could appear 
everywhere on the recursion tree

W = V∖(S+ ∪ S−) recursion tree

……
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Contraction & Recurse
Runtime issue:  
appears in both recursion branches


• A single vertex could appear 
everywhere on the recursion tree


• Pruning while recursing:  
Every vertex appears in at most two 
branches on the recursion tree 
 
(Details omitted in this presentation)

W = V∖(S+ ∪ S−) recursion tree

……

Each vertex only appears in 
at most two branches



Brief sketch of 
4-approx of min-radius



Achieving 4-approx
Goal: decide if the min-radius is  
<4R or >R


• Cannot use contractions
C

S
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• Cannot use contractions


• Partition  
Recurse on , 

S = S+ ∪ S−
(S+, C+) (S−, C−)
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S+

C−
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Achieving 4-approx
Goal: decide if the min-radius is  
<4R or >R


• Cannot use contractions


• Partition  
Recurse on , 


• Impossible to preserve pairwise 
distances in subgraphs

S = S+ ∪ S−
(S+, C+) (S−, C−)

C+

S+

C−

S−

Shortest paths 

crossing the border



Achieving 4-approx
Goal: decide if the min-radius is  
<4R or >R


• Cannot use contractions


• Partition  
Recurse on , 


• Impossible to preserve pairwise 
distances in subgraphs


• Solution: Only preserve some pairs of 
distances, i.e. 

S = S+ ∪ S−
(S+, C+) (S−, C−)

C × (C ∪ T)

C+

S+

C−

S−

T+ T−

Only preserve distances 
between C × (C ∪ T)



• Better approximation ratio in near-linear time? 
 
Min-diam/radius in general digraphs:     
 
            3 in       vs      4 in Õ(mn1/2) Õ(m)

Further questions

Thanks for listening


