Faster Min-Plus Product for Monotone Instances

Shucheng Chi
Tsinghua University, China chisc21@mails.tsinghua.edu.cn

Ran Duan
Tsinghua University, China duanran@mail.tsinghua.edu.cn

Tianle Xie
Tsinghua University, China xt121@mails.tsinghua.edu.cn

Tianyi Zhang ${ }^{1}$ Tel Aviv University, Israel tianyiz21@tauex.tau.ac.il

1. The fourth author is supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 803118 UncertainENV)

1. Definitions \& Applications

Monotone Min-Plus Product

\[\)| $(A \star B)_{i, j}=\min _{k}\left\{A_{i, k}+B_{k, j}\right\}$ |
| :--- |
| $0 \leq B_{i, 1} \leq B_{i, 2} \leq \cdots \leq B_{i, n}=O(n)$ |

\]

Monotone Min-Plus Convolution

$$
(A \diamond B)_{i}=\min _{i}\left\{A_{j}+B_{i-j}\right\}
$$

$$
0 \leq A_{1} \leq A_{2} \leq \cdots \leq A_{n} \leq O(n) \quad 0 \leq B_{1} \leq B_{2} \leq \cdots \leq B_{n} \leq O(n)
$$

Applications in other algorithmic problems

3. Faster Monotone Min-Plus Product simplified

$A_{i, k}=n^{1 / 3} \tilde{A}_{i, k}$
$B_{k, j}=n^{1 / 3} \tilde{B}_{k, j}$
$C_{i, j}=n^{1 / 3} \tilde{C}_{i, j}$

Only focus on $k \in[n]$ such that:
$\left|\tilde{A}_{i, k}+\tilde{B}_{k, j}-\tilde{C}_{i, j}\right|=O(1)$
and then minimize:
$R_{i, k}+S_{k, j}$
Degree reduction by modulo:

$$
C_{i, j}(x, y)
$$

$A_{i, k}^{p}(x, y)=x^{R_{i, k}} \cdot y^{\widetilde{A}_{i, k}} \bmod p$
$B_{k, j}^{p}(x, y)=x^{S_{k j}} \cdot y^{\tilde{B}_{k j}} \bmod p$
$C_{i, j}^{p}(x, y)=\sum_{k=1}^{n}\left(A_{i, k}^{p} \cdot B_{k, j}^{p}\right)(x, y)$

$$
\begin{aligned}
& =y^{\tilde{c}_{i, j} F_{0}(x)+y^{\tilde{c}_{i,}+1} F_{1}(x)+\cdots} \\
& +y_{\tilde{c}_{i, j}+p} F_{p}(x)+y^{\tilde{c}_{i, j}+p+1} F_{p}(x)+\cdots
\end{aligned}
$$

Modulo adds noise to output $C_{i, j}^{p}(x, y)$
$=y^{\tilde{c}_{i, j} \bmod p}\left(F_{0}(x)+F_{p}(x)\right)$
$+y^{\tilde{c}_{i, j}+1 \bmod p}\left(F_{1}(x)+F_{p}(x)\right)+\cdots$
k

Finding all noisy terms:

- Fix any $i, k \in[n]$ List all j in the interval such that
$\tilde{C}_{i, j} \neq \tilde{A}_{i, k}+\tilde{B}_{k, j}-O(1)$
$\tilde{C}_{i, j} \equiv \tilde{A}_{i, k}+\tilde{B}_{k, j}-O(1) \bmod p$
Total runtime $=\tilde{O}\left(n^{2+2 / 3}\right)(\omega=2)$

Divide each row into intervals Entries in the each interval are the same

Since \tilde{B} is monotone, there are at most $n^{2 / 3}$ intervals for each row

reference	bounded-difference min-plus product	monotone min-plus product	monotone min-plus convolution
baseline	n^{3}	n^{3}	n^{2}
Chan and Lewenstein 2015			$n^{1.859}$
Bringmann et al. 2016	$n^{2.824}$		
V. Williams and Xu 2020		$n^{(15+\omega) / 6}$	
Gu et al. 2021		$n^{(12+\omega) / 5}$	
Chi, Duan and Xie	$n^{2+\omega / 3}$		
new	$n^{(3+\omega) / 2}$	$n^{(3+\omega) / 2}$	$n^{1.5}$

4. Faster Monotone Min-Plus Convolution simplified

$$
\begin{aligned}
& A_{i}=n^{1 / 5} \tilde{A}_{i}+R_{i} \\
& B_{i}=n^{1 / 5} \tilde{B}_{i}+S_{i} \\
& C_{i}=n^{1 / 5} \tilde{C}_{i}+? \\
& \text { quotient remainder }
\end{aligned}
$$

Degree reduction by modulo:

$$
\begin{gathered}
A_{i}^{p}(x, y, z)=x^{R_{i}} \cdot y^{\tilde{A}_{i} \bmod p} \cdot z^{i} \\
B_{i}^{p}(x, y, z)=x^{S_{i}} \cdot y^{\tilde{B}_{i}} \bmod p \cdot z^{i} \\
C_{i}^{p}(x, y, z)=\sum_{j=1}^{i-1}\left(A_{j}^{p} \cdot B_{i-j}^{p}\right)(x, y, z)
\end{gathered}
$$

Only focus on $j \in[n]$ such that:

$$
\begin{aligned}
& \left|\tilde{A}_{j}+\tilde{B}_{i-j}-\tilde{C}_{j}\right|=O(1) \\
& \text { and then minimize: } \\
& \qquad R_{j}+S_{i-j}
\end{aligned}
$$

$C_{i}(x, y, z) / z^{i}$
$=y^{\tilde{C}_{i, j}} F_{0}(x)+y^{\tilde{C}_{i, j}+1} F_{1}(x)+\cdots$
$+y^{\tilde{C}_{i, j}+p} F_{p}(x)+y^{\tilde{C}_{i, j}+p+1} F_{p}(x)+\cdots$
Modulo adds noise to output $C_{i}^{p}(x, y, z) / z^{i}$
$=y^{\tilde{C}_{i, j} \bmod p}\left(F_{0}(x)+F_{p}(x)\right)$
$+y^{\tilde{C}_{i, j}+1 \bmod p}\left(F_{1}(x)+F_{p}(x)\right)+\cdots$
\tilde{A}

Finding all noisy terms:

- Fix any pairs of intervals of
$\left[i_{1},{\underset{\sim}{2}}_{2}^{\sim}\right],\left[j_{1}, j_{2}\right]$, find all i, j s.t.
$\tilde{C}_{i+j} \neq \tilde{A}_{i}+\tilde{B}_{j}-O(1)$
$\tilde{C}_{i+j} \equiv \tilde{A}_{i}+\tilde{B}_{j}-O(1) \bmod p$
Total runtime $=\tilde{O}\left(n^{8 / 5}\right)$

Divide both \tilde{A}, \tilde{B} into intervals Entries in the each interval are the same

Since \tilde{A}, \tilde{B} is monotone, there are at most $n^{4 / 5}$ intervals

