
 Near-linear Time Algorithm for Approximate
Minimum Degree Spanning Trees

Ran Duan Haoqing He Tianyi Zhang

Tsinghua University

Min-deg spanning trees

• Given an undirected graph  
Find a spanning tree T minimizing

• Generalize Hamiltonian Path, thus NP-hard

• Look for approximations

G = (V, E)
max
u∈V

degT(u)

History

Reference Approximation Time

[Fürer and Raghavachari, 1992] Poly(n)

[Fürer and Raghavachari, 1994]

New

O(mn)

O(Δ* + log n)

Δ* + 1

(1 + ϵ)Δ* + O(log n /ϵ2) O(m log7 n /ϵ6)

 denotes the minimum spanning tree degree
m and n denote #edges and #vertices
Δ*

 in Poly(n) time
[Fürer and Raghavachari, 1992]

O(Δ* + log n)

Lemma: (witness) 
If is partitioned into such that 
all inter-component edges touch the witness set , then
a lower bound holds

V W, V1, V2, ⋯, Vl
W

Δ* ≥ (l − 1)/ |W |

A witness lemma

a witness set W

V1 V2 V3

Any spanning tree has at least
 inter-component edges 

 
All these edges are incident
on the witness set W 
 
So, at least one vertex in W
has tree degree

l − 1

≥ (l − 1)/ |W |

• Given a tree T, try to reduce its vertex degrees

• Find non-tree edge ,  
tree path contains a vertex w with

• Switch non-tree and tree edges

(u, v) degT(u), degT(v) ≤ d − 2
degT(w) ≥ d

Local search

tree edge

non-tree

• Given a tree T, try to reduce its vertex degrees

• Find non-tree edge ,  
tree path contains a vertex w with

• Switch non-tree and tree edges

(u, v) degT(u), degT(v) ≤ d − 2
degT(w) ≥ d

Local search

4 4

2

2

3 1

2

3

1

tree edge

non-tree

• Given a tree T, try to reduce its vertex degrees

• Find non-tree edge ,  
tree path contains a vertex w with

• Switch non-tree and tree edges

(u, v) degT(u), degT(v) ≤ d − 2
degT(w) ≥ d

Local search

4 4

2

2

3

2

3

2 2

tree edge

non-tree

• Given a tree T, try to reduce its vertex degrees

• Find non-tree edge ,  
tree path contains a vertex w with

• Switch non-tree and tree edges

(u, v) degT(u), degT(v) ≤ d − 2
degT(w) ≥ d

Local search

2

2

3

2

3

2 2

3 3

tree edge

non-tree

• Repeatedly find non-tree/tree edge switches

• Stopping condition:  
If no such switches, then prove max{degT(u)} = O(Δ* + log n)

Local search

witness W =  
deg ≥ d − 1

• Repeatedly go over all non-tree edges , 
find w on the tree path 
s.t. ,

• could switch between and , 
so each edge may need to be checked multiple times

(u, v)

degT(u), degT(v) ≤ d − 2 degT(w) ≥ d

degT(u) d − 1 ≤ d − 2

Running time

d
d

d-2

Running time

d-1
d

d-1

• Repeatedly go over all non-tree edges , 
find w on the tree path 
s.t. ,

• could switch between and , 
so each edge may need to be checked multiple times

(u, v)

degT(u), degT(v) ≤ d − 2 degT(w) ≥ d

degT(u) d − 1 ≤ d − 2

Running time

d-1
d-2

d-2

• Repeatedly go over all non-tree edges , 
find w on the tree path 
s.t. ,

• could switch between and , 
so each edge may need to be checked multiple times

(u, v)

degT(u), degT(v) ≤ d − 2 degT(w) ≥ d

degT(u) d − 1 ≤ d − 2

Running time

d-1
d-2

d-2

Degree becomes back to d-2
Need to scan its incident edges again

• Repeatedly go over all non-tree edges , 
find w on the tree path 
s.t. ,

• could switch between and , 
so each edge may need to be checked multiple times

(u, v)

degT(u), degT(v) ≤ d − 2 degT(w) ≥ d

degT(u) d − 1 ≤ d − 2

 in timeO(Δ* log n) Õ(m)

A lazy approach

• Previous issue: 
 could switch between and , 

so each edge may need to be checked multiple times

• Idea: 
Scan each adjacency list only once, 
even if drops again

degT(u) d − 1 ≤ d − 2

degT(u) = d − 1

A linear time algorithm

1. Define

2. Go over all edges  
If u, v are in different component in ,  
and have never been ,  
then switch with an edge on S

3. Each edge is visited only once, thus linear time

S = {u ∣ degT(u) ≥ d}

(u, v)
T∖S

degT(u), degT(v) d − 1
(u, v)

A lazy approach

A lazy approach

d
d

d-1

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

A lazy approach

d
Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

d-2

Find a switch which
reduces degrees

d-1

A lazy approach

d-1
d

Scan all dotted edges
to find non-tree/tree
edge switches

After a non-tree/tree
edge switch, a degree
drops below d-1,
introducing more
possible edge switches

d-2

Find a switch which
reduces degrees

Red dotted edges are
forbidden at the beginning

A lazy approach

d-1
d

Scan all dotted edges
to find non-tree/tree
edge switches

After a non-tree/tree
edge switch, a degree
drops below d-1,
introducing more
possible edge switches

d-2

Find a switch which
reduces degrees

Yet, our algorithm is too lazy to
check them again 
 
So the running time is linear

Red dotted edges are
forbidden at the beginning

Problems with applying the witness lemma

• Take witness set W = { u | was once }degT(u) ≥ d − 1

A lazy approach

a witness set W

V1 V2 V3

By the witness lemma,

W could contain too many vertices
with low tree degrees, which leads to

,

Not a good stopping condition

Δ* ≥ (l − 1)/ |W |

l ≪ d |W | Δ* ≪ d

A key observation

degT(⋅)
d /2 d

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• Hopefully, W mostly consists of high-deg vertices

< d/2
d − 1

A key observation

degT(⋅)
d /2 d

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• Hopefully, W mostly consists of high-deg vertices

< d/2
d − 1

A key observation

degT(⋅)
d /2 d

Not so many would
join the witness set

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• Hopefully, W mostly consists of high-deg vertices

< d/2
d − 1

A key observation

degT(⋅)
d /2 d

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

A key observation

degT(⋅)
d /2 d

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

A key observation

degT(⋅)
d /2 d

 may drop by ∑
u

degT(u) d /2contribute edge switchesd /2

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

A key observation

degT(⋅)
d /2 d

−d /2

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

A key observation

degT(⋅)
d /2 d

−d /2
−d /2−d /2

−d /2

−d /2−d /2

−d /2 −d /2

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

A key observation

degT(⋅)
d /2 d

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

−d /2
−d /2

−d /2
−d /2

−d /2−d /2

−d /2 −d /2
−d /2−d /2
−d /2

−d /2

−d /2−d /2
−d /2

−d /2

−d /2

−d /2
−d /2 −d /2

−d /2

A key observation

degT(⋅)
d /2 d

−d /2
−d /2

−d /2
−d /2

−d /2−d /2

−d /2 −d /2
−d /2−d /2
−d /2

−d /2

−d /2−d /2
−d /2

−d /2

−d /2

−d /2
−d /2 −d /2

−d /2

High degree vertices would
be reduced greatly, making
a low-degree spanning tree

• Ideally, for vertices with a low tree degree () at
the beginning, most of them may never reach

• What if most of them have reached

< d/2
d − 1

d − 1

• Try different choices of , make sure that 
#{ u | } 2 * #{ u | }

• Overall, the witness set won’t be blown up too much

O(log n) d
degT(u) ≥ d/2 ≤ degT(u) ≥ d − 1

A remaining issue
• Ideally, for vertices with a low tree degree () at the

beginning, most of them may never reach

• What happens to vertices with medium degree

< d/2
d − 1

∈ [d/2,d − 1)

• Try different choices of ; make sure that 
#{ u | } 2 * #{ u | }

• Overall, the witness set won’t be blown up too much

• Apply our lazy local-search on for  
Can prove will be reduced multiplicatively

O(log n) d
degT(u) ≥ d/2 ≤ degT(u) ≥ d − 1

di i = 1,2,⋯
Δ = max degT(⋅)

A remaining issue

ΔΔ/2 d1 d2 dlog n

Δ
2 log n

Δ
2 log n

Δ
2 log n

 in time

high-level overview

(1 + ϵ)Δ* Õ(m)

Multi-hop switches
• Generalize the concept of non-tree/tree edge switches

• Reduce to

• Run time using the lazy approach as well

O(Δ* log n) (1 + ϵ)Δ* + O(log n/ϵ)

Õ(m)

d

d-2 d-3

d

d-2

d-3

d-1

d-2

1-hop non-tree/tree switch 2-hop non-tree/tree switch

Multi-hop switches

• Similar to the blocking-flow algorithm for max-flow

• Search for longer & longer hop non-tree/tree switches

• Assume we do not have switches with <k hops

• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

layer-1 : tree degree ≥ d d d d+2 d+1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

layer-1 : tree degree ≥ d d d d+2 d+1

d-1d-1 d-1 d-1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

d-1d-1 d-1 d-1layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

d-1d-1 d-1 d-1layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches
• To find k-hop switches, partition into k layers

• Use a depth-first search to find k-hop switches

d d d+2 d+1

layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

Multi-hop switches

d d d+2 d+1

d-1d-1 d-1 d-1layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

a witness set W

• If , either tree degree is reduced multiplicatively,

• or try the witness lemma at each layer, proving

k > log1+ϵ n

Δ* ≥ (1 − ϵ)d − O(log n)

Multi-hop switches

d d d+2 d+1

d-1d-1 d-1 d-1layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

a witness set W

• If , either tree degree is reduced multiplicatively,

• or try the witness lemma at each layer, proving

k > log1+ϵ n

Δ* ≥ (1 − ϵ)d − O(log n)

Multi-hop switches

d d d+2 d+1

d-1d-1 d-1 d-1layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

a witness set W

layer-i : tree degree = d − 1

..…

• If , either tree degree is reduced multiplicatively,

• or try the witness lemma at each layer, proving

k > log1+ϵ n

Δ* ≥ (1 − ϵ)d − O(log n)

Multi-hop switches

d d d+2 d+1

d-1d-1 d-1 d-1layer-2 : tree degree = d − 1

layer-1 : tree degree ≥ d

layer-k : tree degree = d − 1

a witness set W

• If , either tree degree is reduced multiplicatively,

• or try the witness lemma at each layer, proving

k > log1+ϵ n

Δ* ≥ (1 − ϵ)d − O(log n)

Thank you!

