# Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees

Ran Duan Haoqing He **Tianyi Zhang** 

Tsinghua University

#### Min-deg spanning trees

- Given an undirected graph G = (V, E)Find a spanning tree T minimizing  $\max_{u \in V} \deg_T(u)$
- Generalize Hamiltonian Path, thus NP-hard
- Look for approximations

#### History

| Reference                      | Approximation                                 | Time                      |
|--------------------------------|-----------------------------------------------|---------------------------|
| [Fürer and Raghavachari, 1992] | $O(\Delta^* + \log n)$                        | Poly(n)                   |
| [Fürer and Raghavachari, 1994] | $\Delta^* + 1$                                | O(mn)                     |
| New                            | $(1+\epsilon)\Delta^* + O(\log n/\epsilon^2)$ | $O(m\log^7 n/\epsilon^6)$ |

 $\Delta^*$  denotes the minimum spanning tree degree  $\emph{m}$  and  $\emph{n}$  denote #edges and #vertices

# $O(\Delta^* + \log n)$ in Poly(n) time

[Fürer and Raghavachari, 1992]

#### A witness lemma

Lemma: (witness)

If V is partitioned into  $W, V_1, V_2, \cdots, V_l$  such that all inter-component edges touch the **witness set** W, then a lower bound holds  $\Delta^* \geq (l-1)/|W|$ 



Any spanning tree has at least l-1 inter-component edges

All these edges are incident on the witness set W

So, at least one vertex in W has tree degree

$$\geq (l-1)/|W|$$

- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge (u, v),  $\deg_T(u)$ ,  $\deg_T(v) \le d 2$  tree path contains a vertex w with  $\deg_T(w) \ge d$
- Switch non-tree and tree edges



- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge (u, v),  $\deg_T(u)$ ,  $\deg_T(v) \le d 2$  tree path contains a vertex w with  $\deg_T(w) \ge d$
- Switch non-tree and tree edges



- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge (u, v),  $\deg_T(u)$ ,  $\deg_T(v) \le d 2$  tree path contains a vertex w with  $\deg_T(w) \ge d$
- Switch non-tree and tree edges



- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge (u, v),  $\deg_T(u)$ ,  $\deg_T(v) \le d 2$  tree path contains a vertex w with  $\deg_T(w) \ge d$
- Switch non-tree and tree edges



- Repeatedly find non-tree/tree edge switches
- Stopping condition:

If no such switches, then **prove**  $\max\{\deg_T(u)\} = O(\Delta^* + \log n)$ 



- Repeatedly go over all non-tree edges (u, v), find w on the tree path s.t.  $\deg_T(u), \deg_T(v) \leq d 2, \deg_T(w) \geq d$
- $\deg_T(u)$  could switch between d-1 and  $\leq d-2$ , so each edge may need to be checked multiple times



- Repeatedly go over all non-tree edges (u, v), find w on the tree path s.t.  $\deg_T(u)$ ,  $\deg_T(v) \leq d 2$ ,  $\deg_T(w) \geq d$
- $\deg_T(u)$  could switch between d-1 and  $\leq d-2$ , so each edge may need to be checked multiple times



- Repeatedly go over all non-tree edges (u, v), find w on the tree path s.t.  $\deg_T(u), \deg_T(v) \leq d 2, \deg_T(w) \geq d$
- $\deg_T(u)$  could switch between d-1 and  $\leq d-2$ , so each edge may need to be checked multiple times



- Repeatedly go over all non-tree edges (u, v), find w on the tree path s.t.  $\deg_T(u)$ ,  $\deg_T(v) \leq d 2$ ,  $\deg_T(w) \geq d$
- $\deg_T(u)$  could switch between d-1 and  $\leq d-2$ , so each edge may need to be checked multiple times



# $O(\Delta * \log n)$ in $\tilde{O}(m)$ time

#### Previous issue:

 $\deg_T(u)$  could switch between d-1 and  $\leq d-2$ , so each edge may need to be checked multiple times

#### Idea:

Scan each adjacency list only once, even if  $\deg_T(u) = d - 1$  drops again

#### A linear time algorithm

- 1. Define  $S = \{u \mid \deg_T(u) \ge d\}$
- 2. Go over all edges (u, v)If u, v are in different component in  $T \setminus S$ , and  $\deg_T(u), \deg_T(v)$  have never been d-1, then switch (u, v) with an edge on S
- 3. Each edge is visited only once, thus linear time

Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning



Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

Find a switch which reduces degrees



Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

Find a switch which reduces degrees

After a non-tree/tree edge switch, a degree drops below d-1, introducing more possible edge switches



Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

Find a switch which reduces degrees

After a non-tree/tree edge switch, a degree drops below d-1, introducing more possible edge switches



#### Problems with applying the witness lemma

• Take witness set  $W = \{ u \mid \deg_T(u) \text{ was once } \geq d - 1 \}$ 



By the witness lemma,

$$|\Delta^* \ge (l-1)/|W|$$

W could contain too many vertices with low tree degrees, which leads to

$$|l \ll d |W|$$
,  $\Delta^* \ll d$ 

Not a good stopping condition

- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- Hopefully, W mostly consists of high-deg vertices



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- Hopefully, W mostly consists of high-deg vertices



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- Hopefully, W mostly consists of high-deg vertices



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What if most of them have reached d-1



# A remaining issue

- Ideally, for vertices with a low tree degree ( < d/2) at the beginning, most of them may never reach d-1
- What happens to vertices with medium degree  $\in [d/2, d-1)$

- Try  $O(\log n)$  different choices of d, make sure that  $\{u \mid deg_T(u) \geq d/2\} \leq 2 * \#\{u \mid deg_T(u) \geq d-1\}$
- Overall, the witness set won't be blown up too much

# A remaining issue

- Try  $O(\log n)$  different choices of d; make sure that  $\{u \mid deg_T(u) \geq d/2\} \leq 2 * \#\{u \mid deg_T(u) \geq d-1\}$
- Overall, the witness set won't be blown up too much
- Apply our lazy local-search on  $d_i$  for  $i=1,2,\cdots$  Can prove  $\Delta=\max\deg_T(\,\cdot\,)$  will be reduced multiplicatively



# $(1+\epsilon)\Delta * \text{in } \tilde{O}(m) \text{ time}$ high-level overview

#### Multi-hop switches

- Generalize the concept of non-tree/tree edge switches
- Reduce  $O(\Delta^* \log n)$  to  $(1 + \epsilon)\Delta^* + O(\log n/\epsilon)$
- Run  $ilde{O}(m)$  time using the lazy approach as well

1-hop non-tree/tree switch



2-hop non-tree/tree switch



- Similar to the blocking-flow algorithm for max-flow
- Search for longer & longer hop non-tree/tree switches

- Assume we do not have switches with <k hops</li>
- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

**layer-1**: tree degree  $\geq d$ 



- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

**layer-1**: tree degree  $\geq d$ 

**layer-2**: tree degree = d - 1

•
•
•
•
•







- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



**layer-1**: tree degree  $\geq d$ 

**layer-2**: tree degree 
$$= d - 1$$

•





- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



**layer-1**: tree degree  $\geq d$ 

**layer-2**: tree degree 
$$= d - 1$$

•



- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



**layer-1**: tree degree  $\geq d$ 

**layer-2**: tree degree 
$$= d - 1$$

•



- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches







- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches







- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches



- If  $k > \log_{1+\epsilon} n$ , either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving  $\Delta^* \ge (1 \epsilon)d O(\log n)$

**layer-1**: tree degree  $\geq d$ 

layer-2: tree degree = d-1

•



- If  $k > \log_{1+\epsilon} n$ , either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving  $\Delta^* \ge (1 \epsilon)d O(\log n)$

**layer-1**: tree degree  $\geq d$ 

layer-2: tree degree = d-1

•



- If  $k > \log_{1+\epsilon} n$ , either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving  $\Delta^* \ge (1 \epsilon)d O(\log n)$



**layer-2**: tree degree = d - 1

**layer-i**: tree degree = d - 1







- If  $k > \log_{1+\epsilon} n$ , either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving  $\Delta^* \ge (1 \epsilon)d O(\log n)$







# Thank you!