Near-linear Time Algorithm for Approximate
imum ree Spanning Trees

Ran Duan Haoqging He Tianyi Zhang

Tsinghua University

Min-deg spanning trees

 Given an undirected graph G = (V, E)

Find a spanning tree T minimizing max deg(u)
ueV

e Generalize Hamiltonian Path, thus NP-hard

e Look for iImations

History

Reference Approximation Time
[FUrer and Raghavachari, 1992] O(A* + logn) Poly(n)
[Firer and Raghavachari, 1994] A* 4+ 1 O(mn)
New (1 4+ e)A* + O(logn/e?) O@mlog’ n/e®)

A* denotes the minimum spanning tree degree
m and n denote #edges and #vertices

O(A* + log n) in Poly(n) time

[FUrer and Raghavachari, 1992]

A withess lemma

Lemma: (witness)

If V'is partitioned into W, V,, V,, ---, V; such that

al
a

inter-component edges touch the witness set W, then
ower bound holds A* > ([— 1)/| W/|

Any spanning tree has at least

All these edges are incident
on the witness set W

So, at least one vertex in W
has tree degree

> (I=1D/|W]

. ocal search

 QGiven atree T, try to reduce its vertex degrees

» Find non-tree edge (u, V),
tree path contains a vertex w with deg(w) > d

* Switch non-tree and tree edges

~N

tree edge

----------- non-tree

. ocal search

 QGiven atree T, try to reduce its vertex degrees

» Find non-tree edge (u, V),
tree path contains a vertex w with deg(w) > d

* Switch non-tree and tree edges

Sk

tree edge

----------- non-tree

. ocal search

 QGiven atree T, try to reduce its vertex degrees

» Find non-tree edge (u, V),
tree path contains a vertex w with deg(w) > d

* Switch non-tree and tree edges

Sk

tree edge

----------- non-tree

. ocal search

 QGiven atree T, try to reduce its vertex degrees

» Find non-tree edge (u, V),
tree path contains a vertex w with deg(w) > d

* Switch non-tree and tree edges

tree edge

----------- non-tree

. ocal search

 Repeatedly find non-tree/tree edge switches

« Stopping condition:
If no such switches, then prove max{deg(u)} = O(A* 4+ logn)

e R —

/ witness W = \
\ deg >d—1 /

Running time

» Repeatedly go over all non-tree edges (u, v),
find w on the tree path

s.t. ,deg,(w) > d

 deg (u) could switch betweend — 1 and < d — 2,
so each edge may need to be checked multiple times

Running time

» Repeatedly go over all non-tree edges (u, v),
find w on the tree path

s.t. ,deg,(w) > d

 deg (u) could switch betweend — 1 and < d — 2,
so each edge may need to be checked multiple times

Running time

» Repeatedly go over all non-tree edges (u, v),
find w on the tree path

s.t. ,deg,(w) > d

 deg (u) could switch betweend — 1 and < d — 2,
so each edge may need to be checked multiple times

Running time

» Repeatedly go over all non-tree edges (u, v),
find w on the tree path

s.t. ,deg,(w) > d

 deg (u) could switch betweend — 1 and < d — 2,
so each edge may need to be checked multiple times

O

Degree becomes back to
Need to scan its incident edges again

O(A*log n) in O(m) time

A lazy approach

* Previous issue:
deg(u) could switch betweend — 1 and < d — 2,
SO each edge may need to be

e |dea:
Scan each adjacency list only once,

even if deg(#) = d — 1 drops again

A lazy approach

A linear time algorithm
1. Define § = {u | deg(u) > d}

2. Go over all edges (u, v)
If u, v are in different component in T\ S,

and deg(u), deg(v) have never been d — 1,
then switch (u, v) with an edge on S

3. Each edge is visited only once, thus linear time

A lazy approach

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

A lazy approach

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

Find a switch which
reduces degrees

A lazy approach

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

Find a switch which
reduces degrees

After a non-tree/tree
edge switch, a degree
drops below d-1,

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-”
-

A lazy approach

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

Find a switch which
reduces degrees

After a non-tree/tree
edge switch, a degree
drops below d-1,

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P
-

Yet, our algorithm is too lazy to
check them again

So the running time is linear

A lazy approach

Problems with applying the withess lemma

o Take witness set W = {u|deg,(u) was once > d — 1| }

By the withess lemma,

W could contain too many vertices
with low tree degrees, which leads to

l<d|W|, A*<d

Not a good stopping condition

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

* Hopefully, W mostly consists of high-deg vertices

000000
000000
000000
000000
000000
000000

deg,(-)
d/?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

* Hopefully, W mostly consists of high-deg vertices

O OO

O OO

O OO

O O0O0O0OO0O0 O

O O0O0OO00O0 O O
O O0O0O0OO0O0O0 O O0OO0O0O0O0O00O0

deg,(-)
d/?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

* Hopefully, W mostly consists of high-deg vertices

Not so many would
join the witness set

000000
000000
000000
OO0
oJoJe

O O 00O

O
O O
O O 0O

dl?2

deg,(-)

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

000000
000000
000000
000000
000000
000000

deg,(-)
d/?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

000000
000000
000000
000000
000000
00000

deg,(-)
d/?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

contribute edge switches Z deg;(u) may drop by

u

000000
000000
000000
000000
000000
00000

O

>

deg,(-)

dl?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

000000
000000
000000
000000
000000
00000

deg,(-)
d/?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

O O OO

O O OO

O O OO

O O OO O O

O OO0 00O O OO

O OO0 O OO O OO g
deg,(-)

dl?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1
O0O0O0
OO0OO0OO0OO0O
O0OO0O0O0O O0000O0O
OO0OO0OO0OO OO0OO0OO00O0O X
deg,(-)

dl?2 d

A Key observation

o |deally, for vertices with a low tree degree (< d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

High degree vertices would
be reduced greatly, making
a low-degree spanning tree

A remaining Issue

Ideally, for vertices with a low tree degree (< d/2) at the
beginning, most of them may never reach d — 1

What happens to vertices with eld/l2,d—1)

Try O(log n) different choices of d, make sure that
#{u|degr(u) >2d2Yy<2*#{u|degr(u) >2d—1}

Overall, the witness set won’t be blown up too much

A remaining Issue

« Try O(log n) different choices of d; make sure that
#{u|degr(u) >d/2}y<2*#{u|degr(u) >d—1}

e Qverall, the witness set won’t be blown up too much

e Apply our lazy local-search on d; fori = 1,2,---
Can prove A = max deg,(-) will be reduced multiplicatively

2logn 2logn 2logn

A/2 d, d, Aiog 1 A

(1 + €)A* in O(m) time

high-level overview

Multi-hop switches

* (Generalize the concept of non-tree/tree edge switches

« Reduce O(A*logn)to (1 + ¢)A* 4+ O(logn/e)

» Run O(m) time using the lazy approach as well

1-hop non-tree/tree switch

2-hop non-tree/tree switch

Multi-hop switches

Similar to the blocking-flow algorithm for max-flow

Search for hop non-tree/tree switches

Assume we do not have switches with <k hops
To find k-hop switches, partition into k layers

Use a to find k-hop switches

Multi-hop switches

 To find k-hop switches, partition into k layers

* Use a depth-first search to find k-hop switches

W W

Multi-hop switches

 To find k-hop switches, partition into k layers

* Use a depth-first search to find k-hop switches

W W

layer-1 : tree degree > d

Multi-hop switches

 To find k-hop switches, partition into k layers

* Use a depth-first search to find k-hop switches

layer-1 : tree degree > d W% %
\/

\
\
1
\
\
[< <N
O -\------- O --\------- 0—C

Multi-hop switches

 To find k-hop switches, partition into k layers

* Use a depth-first search to find k-hop switches

layer-1 : tree degree > d W% %
//’// \

layer-2 : tree degree = d — 1

Multi-hop switches

 To find k-hop switches, partition into k layers

* Use a depth-first search to find k-hop switches

layer-1 : tree degree > d W% %
//’// \

layer-2 : tree degree = d — 1

layer-k : tree degree = d — 1

Multi-hop switches

* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches

W W

Multi-hop switches

* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches

W W

Multi-hop switches

* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches

W W

Multi-hop switches

* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches

W W

Multi-hop switches

* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches

W W

Multi-hop switches

* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches

Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)

— " —
—

layer-1 : tree degree > d - = _

— —
— - —
— — — — — —

layer-2 : tree degree = d — 1

layer-k : tree degree = d — 1

Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)

— — —
— — -

layer-1: tree degree > d , 2 withess set W \

layer-2 : tree degree = d — 1 ~< e

— — — — — -

layer-k : tree degree = d — 1

Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)

_———
— S—

layer-1 : tree degree > d \

\ a witness set W i

layer-2 : tree degree = d — 1 \ Y

layer-i : tree degree = d — 1 - = ~

_— e — —

layer-k : tree degree = d — 1

Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)

layer-1 : tree degree > d 4

layer-2 : tree degree = d — 1 | a witness set W

layer-k : tree degree = d — 1 ~< e

— — — -

Thank you!

