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Min-deg spanning trees

 Given an undirected graph G = (V, E)

Find a spanning tree T minimizing max deg(u)
ueV

e Generalize Hamiltonian Path, thus NP-hard

e Look for iImations



History

Reference Approximation Time
[FUrer and Raghavachari, 1992] O(A* + logn) Poly(n)
[Firer and Raghavachari, 1994] A* 4+ 1 O(mn)
New (1 4+ e)A* + O(logn/e?)  O@mlog’ n/e®)

A* denotes the minimum spanning tree degree
m and n denote #edges and #vertices



O(A* + log n) in Poly(n) time

[FUrer and Raghavachari, 1992]



A withess lemma

Lemma: (witness)

If V'is partitioned into W, V,, V,, ---, V; such that

al
a

inter-component edges touch the witness set W, then
ower bound holds A* > ([ — 1)/| W/|

Any spanning tree has at least

All these edges are incident
on the witness set W

So, at least one vertex in W
has tree degree

> (I=1D/|W]



. ocal search

 QGiven atree T, try to reduce its vertex degrees

» Find non-tree edge (u, V),
tree path contains a vertex w with deg(w) > d

* Switch non-tree and tree edges
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. ocal search

 QGiven atree T, try to reduce its vertex degrees

» Find non-tree edge (u, V),
tree path contains a vertex w with deg(w) > d

* Switch non-tree and tree edges
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. ocal search

 Repeatedly find non-tree/tree edge switches

« Stopping condition:
If no such switches, then prove max{deg(u)} = O(A* 4+ logn)

e R —

/ witness W = \
\ deg >d—1 /




Running time

» Repeatedly go over all non-tree edges (u, v),
find w on the tree path

s.t. ,deg,(w) > d

 deg (u) could switch betweend — 1 and < d — 2,
so each edge may need to be checked multiple times
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Running time

» Repeatedly go over all non-tree edges (u, v),
find w on the tree path

s.t. ,deg,(w) > d

 deg (u) could switch betweend — 1 and < d — 2,
so each edge may need to be checked multiple times

O

Degree becomes back to
Need to scan its incident edges again




O(A*log n) in O(m) time



A lazy approach

* Previous issue:
deg(u) could switch betweend — 1 and < d — 2,
SO each edge may need to be

e |dea:
Scan each adjacency list only once,

even if deg(#) = d — 1 drops again




A lazy approach

A linear time algorithm
1. Define § = {u | deg(u) > d}

2. Go over all edges (u, v)
If u, v are in different component in T\ S,

and deg(u), deg(v) have never been d — 1,
then switch (u, v) with an edge on S

3. Each edge is visited only once, thus linear time




A lazy approach

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning
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After a non-tree/tree
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A lazy approach

Scan all dotted edges
to find non-tree/tree
edge switches

Red dotted edges are
forbidden at the beginning

Find a switch which
reduces degrees

After a non-tree/tree
edge switch, a degree
drops below d-1,
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Yet, our algorithm is too lazy to
check them again

So the running time is linear




A lazy approach

Problems with applying the withess lemma

o Take witness set W = {u|deg,(u) was once > d — 1| }

By the withess lemma,

W could contain too many vertices
with low tree degrees, which leads to

l<d|W|, A*<d

Not a good stopping condition




A Key observation

o |deally, for vertices with a low tree degree ( < d/2) at
the beginning, most of them may never reach d — 1

* Hopefully, W mostly consists of high-deg vertices
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A Key observation

o |deally, for vertices with a low tree degree ( < d/2) at
the beginning, most of them may never reach d — 1

* Hopefully, W mostly consists of high-deg vertices

Not so many would
join the witness set
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A Key observation

o |deally, for vertices with a low tree degree ( < d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

contribute edge switches Z deg;(u) may drop by

u
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A Key observation

o |deally, for vertices with a low tree degree ( < d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1
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A Key observation

o |deally, for vertices with a low tree degree ( < d/2) at
the beginning, most of them may never reach d — 1

. most of them have reached d — 1

High degree vertices would
be reduced greatly, making
a low-degree spanning tree




A remaining Issue

Ideally, for vertices with a low tree degree ( < d/2) at the
beginning, most of them may never reach d — 1

What happens to vertices with eld/l2,d—1)

Try O(log n) different choices of d, make sure that
#{u|degr(u) >2d2Yy<2*#{u|degr(u) >2d—1}

Overall, the witness set won’t be blown up too much




A remaining Issue

« Try O(log n) different choices of d; make sure that
#{u|degr(u) >d/2}y<2*#{u|degr(u) >d—1}

e Qverall, the witness set won’t be blown up too much

e Apply our lazy local-search on d; fori = 1,2,---
Can prove A = max deg,( - ) will be reduced multiplicatively

2logn 2logn 2logn

A/2 d, d, Aiog 1 A




(1 + €)A* in O(m) time

high-level overview



Multi-hop switches

* (Generalize the concept of non-tree/tree edge switches

« Reduce O(A*logn)to (1 + ¢)A* 4+ O(logn/e)

» Run O(m) time using the lazy approach as well

1-hop non-tree/tree switch

2-hop non-tree/tree switch




Multi-hop switches

Similar to the blocking-flow algorithm for max-flow

Search for hop non-tree/tree switches

Assume we do not have switches with <k hops
To find k-hop switches, partition into k layers

Use a to find k-hop switches




Multi-hop switches

 To find k-hop switches, partition into k layers

* Use a depth-first search to find k-hop switches
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* To find k-hop switches, partition into k layers

 Use a depth-first search to find k-hop switches




Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)
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Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)
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Multi-hop switches

o |f , either tree degree is reduced multiplicatively,

e or try the witness lemma at each layer, proving A* > (1 — ¢)d — O(log n)

layer-1 : tree degree > d 4

layer-2 : tree degree = d — 1 | a witness set W

layer-k : tree degree = d — 1 ~< e
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Thank you!



