Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees

Ran Duan
Tsinghua University

Tianyi Zhang

Min-deg spanning trees

- Given an undirected graph $G=(V, E)$

Find a spanning tree T minimizing $\max \operatorname{deg}_{T}(u)$ $u \in V$

- Generalize Hamiltonian Path, thus NP-hard
- Look for approximations

History

Reference

[Fürer and Raghavachari, 1992]

Approximation

Time

$$
O\left(\Delta^{*}+\log n\right) \quad \operatorname{Poly}(n)
$$

[Fürer and Raghavachari, 1994]

New
$\Delta^{*}+1$
$O(m n)$

$$
(1+\epsilon) \Delta^{*}+O\left(\log n / \epsilon^{2}\right) \quad O\left(m \log ^{7} n / \epsilon^{6}\right)
$$

Δ^{*} denotes the minimum spanning tree degree m and \boldsymbol{n} denote \#edges and \#vertices

$O\left(\Delta^{*}+\log n\right)$ in Poly(n) time

[Fürer and Raghavachari, 1992]

A witness lemma

Lemma: (witness)
If V is partitioned into $W, V_{1}, V_{2}, \cdots, V_{l}$ such that all inter-component edges touch the witness set W, then a lower bound holds $\Delta^{*} \geq(l-1) /|W|$

Any spanning tree has at least
$l-1$ inter-component edges
All these edges are incident on the witness set W

So, at least one vertex in W has tree degree
$\geq(l-1) /|W|$

Local search

- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge $(u, v), \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2$ tree path contains a vertex w with $\operatorname{deg}_{T}(w) \geq d$
- Switch non-tree and tree edges

tree edge
non-tree

Local search

- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge $(u, v), \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2$ tree path contains a vertex w with $\operatorname{deg}_{T}(w) \geq d$
- Switch non-tree and tree edges

tree edge
non-tree

Local search

- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge $(u, v), \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2$ tree path contains a vertex w with $\operatorname{deg}_{T}(w) \geq d$
- Switch non-tree and tree edges

non-tree

Local search

- Given a tree T, try to reduce its vertex degrees
- Find non-tree edge $(u, v), \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2$ tree path contains a vertex w with $\operatorname{deg}_{T}(w) \geq d$
- Switch non-tree and tree edges

non-tree

Local search

- Repeatedly find non-tree/tree edge switches
- Stopping condition:

If no such switches, then prove $\max \left\{\operatorname{deg}_{T}(u)\right\}=O\left(\Delta^{*}+\log n\right)$

Running time

- Repeatedly go over all non-tree edges (u, v), find w on the tree path

$$
\text { s.t. } \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2, \operatorname{deg}_{T}(w) \geq d
$$

- $\operatorname{deg}_{T}(u)$ could switch between $d-1$ and $\leq d-2$, so each edge may need to be checked multiple times

Running time

- Repeatedly go over all non-tree edges (u, v), find w on the tree path

$$
\text { s.t. } \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2, \operatorname{deg}_{T}(w) \geq d
$$

- $\operatorname{deg}_{T}(u)$ could switch between $d-1$ and $\leq d-2$, so each edge may need to be checked multiple times

Running time

- Repeatedly go over all non-tree edges (u, v), find w on the tree path

$$
\text { s.t. } \operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2, \operatorname{deg}_{T}(w) \geq d
$$

- $\operatorname{deg}_{T}(u)$ could switch between $d-1$ and $\leq d-2$, so each edge may need to be checked multiple times

Running time

- Repeatedly go over all non-tree edges (u, v), find w on the tree path
s.t. $\operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v) \leq d-2, \operatorname{deg}_{T}(w) \geq d$
- $\operatorname{deg}_{T}(u)$ could switch between $d-1$ and $\leq d-2$, so each edge may need to be checked multiple times

$O\left(\Delta^{*} \log n\right)$ in $\tilde{O}(m)$ time

A lazy approach

- Previous issue: $\operatorname{deg}_{T}(u)$ could switch between $d-1$ and $\leq d-2$, so each edge may need to be checked multiple times
- Idea:

Scan each adjacency list only once, even if $\operatorname{deg}_{T}(u)=d-1$ drops again

A lazy approach

A linear time algorithm

1. Define $S=\left\{u \mid \operatorname{deg}_{T}(u) \geq d\right\}$
2. Go over all edges (u, v)

If u, v are in different component in $T \backslash S$, and $\operatorname{deg}_{T}(u), \operatorname{deg}_{T}(v)$ have never been $d-1$, then switch (u, v) with an edge on S
3. Each edge is visited only once, thus linear time

A lazy approach

Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

A lazy approach

Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

Find a switch which reduces degrees

A lazy approach

Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

Find a switch which reduces degrees

After a non-tree/tree edge switch, a degree drops below d-1, introducing more possible edge switches

A lazy approach

Scan all dotted edges to find non-tree/tree edge switches

Red dotted edges are forbidden at the beginning

Find a switch which reduces degrees

After a non-tree/tree edge switch, a degree drops below d-1, introducing more possible edge switches

A lazy approach

Problems with applying the witness lemma

- Take witness set $W=\left\{u \mid \operatorname{deg}_{T}(u)\right.$ was once $\left.\geq d-1\right\}$

By the witness lemma,
$\Delta^{*} \geq(l-1) /|W|$
W could contain too many vertices with low tree degrees, which leads to $l \ll d|W|, \Delta^{*} \ll d$

Not a good stopping condition

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- Hopefully, W mostly consists of high-deg vertices

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0					

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- Hopefully, W mostly consists of high-deg vertices

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- Hopefully, W mostly consists of high-deg vertices

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	0	
		$\operatorname{deg}_{T}(\cdot)$

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	contribute $d / 2$ edge switches	$\sum_{u} \operatorname{deg}_{T}(u)$ may drop by $d / 2$
		$\operatorname{deg}_{T}(\cdot)$

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| | | | | | | | | |

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

$\begin{array}{llllll} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{array}{lll} 0 & 0 & \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	$\begin{gathered} -d / 2 \quad-d / 2 \quad-d / 2 \\ -d / 2 \quad-d / 2 \\ -d / 2 \end{gathered} \begin{array}{cc} -d / 2 & -d / 2 \end{array}$
		$\operatorname{deg}_{T}(\cdot)$

A key observation

- Ideally, for vertices with a low tree degree ($<d / 2$) at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

A key observation

- Ideally, for vertices with a low tree degree $(<d / 2)$ at the beginning, most of them may never reach $d-1$
- What if most of them have reached $d-1$

A remaining issue

- Ideally, for vertices with a low tree degree $(<d / 2)$ at the beginning, most of them may never reach $d-1$
- What happens to vertices with medium degree $\in[d / 2, d-1)$
- Try $O(\log n)$ different choices of d, make sure that $\#\left\{\mathrm{u} \mid \operatorname{deg}_{T}(u) \geq d / 2\right\} \leq 2 * \#\left\{\mathrm{u} \mid \operatorname{deg}_{T}(u) \geq d-1\right\}$
- Overall, the witness set won't be blown up too much

A remaining issue

- Try $O(\log n)$ different choices of d; make sure that $\#\left\{\mathrm{u} \mid \operatorname{deg}_{T}(u) \geq d / 2\right\} \leq 2$ * \#\{u| $\left.\operatorname{deg}_{T}(u) \geq d-1\right\}$
- Overall, the witness set won't be blown up too much
- Apply our lazy local-search on d_{i} for $i=1,2, \cdots$ Can prove $\Delta=\max \operatorname{deg}_{T}(\cdot)$ will be reduced multiplicatively

$(1+\epsilon) \Delta^{*}$ in $\tilde{O}(m)$ time high-level overview

Multi-hop switches

- Generalize the concept of non-tree/tree edge switches
- Reduce $O\left(\Delta^{*} \log n\right)$ to $(1+\epsilon) \Delta^{*}+O(\log n / \epsilon)$
- Run $\tilde{O}(m)$ time using the lazy approach as well

2-hop non-tree/tree switch

Multi-hop switches

- Similar to the blocking-flow algorithm for max-flow
- Search for longer \& longer hop non-tree/tree switches
- Assume we do not have switches with <k hops
- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches
layer-1 : tree degree $\geq d$

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find k-hop switches

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find \boldsymbol{k}-hop switches
layer-1 : tree degree $\geq d$

layer-2 : tree degree $=d-1$

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find \boldsymbol{k}-hop switches
layer-1 : tree degree $\geq d$

layer-2 : tree degree $=d-1$

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find \boldsymbol{k}-hop switches
layer-1 : tree degree $\geq d$

layer-2 : tree degree $=d-1$

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find \boldsymbol{k}-hop switches
layer-1 : tree degree $\geq d$

layer-2 : tree degree $=d-1$
layer-k : tree degree $=d-1$

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find \boldsymbol{k}-hop switches
layer-1 : tree degree $\geq d$

layer-2 : tree degree $=d-1$
layer-k : tree degree $=d-1$

Multi-hop switches

- To find k-hop switches, partition into k layers
- Use a depth-first search to find \boldsymbol{k}-hop switches

Multi-hop switches

- If $k>\log _{1+e} n$, either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving $\Delta^{*} \geq(1-\epsilon) d-O(\log n)$
layer-1 $:$ tree degree $\geq d$

layer-2 : tree degree $=d-1$
layer-k : tree degree $=d-1$

Multi-hop switches

- If $k>\log _{1+\epsilon} n$, either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving $\Delta^{*} \geq(1-\epsilon) d-O(\log n)$

Multi-hop switches

- If $k>\log _{1+\epsilon} n$, either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving $\Delta^{*} \geq(1-\epsilon) d-O(\log n)$
layer-1 : tree degree $\geq d$
layer-2 : tree degree $=d-1$
layer-i : tree degree $=d-1$
layer-k : tree degree $=d-1$

Multi-hop switches

- If $k>\log _{1+\epsilon} n$, either tree degree is reduced multiplicatively,
- or try the witness lemma at each layer, proving $\Delta^{*} \geq(1-\epsilon) d-O(\log n)$
layer-1 : tree degree $\geq d$
layer-2 : tree degree $=d-1$
layer-k : tree degree $=d-1$

Thank you!

