Deterministic Max-Flows
In Simple Graphs

Tianyl Zhang, Isinghua Univ.

Max-flows In simple graphs

Graph G = (V, E)
e n vertices
e m edges

Capacities

Terminals
e s, tEV

Max-flows In simple graphs

Graph G = (V, E)
e n vertices
e m edges

Capacities

Terminals
e s, tEV

max-flow has value 2

History

Reference Running time det / rand ?

[KL'98] O(m + nt?) det

[KL02] O(m + nr) rand

[Duan’13] O(n”*1/8) det

rastest X\,,gen Ours O(m + >3V 2) det

T>n

n = #vertices, m = #edges
7 = an upper bound on max-flow

Flow decycling

Ford-Fulkerson

. graph G,of G w.r.t flow f

;
@, »QO O O

v
flow fin G O

* Ford-Fulkerson:
Keep finding augmenting paths from s to tin G,

» Running time = O(mr)
7 IS a known upper bound on the max-flow value

Flow decycling

 |Lemma: [Karger & Levine '98]
Acyclic flow f with value | f| has O(n| f|

i 2) flow edges

1/2

» Gyhas at most O(n | f| ") directed edges when f is acyclic

many flow edges at most O(n | f| 12y flow edges

Flow decycling

 |Lemma: [Karger & Levine '98]
Acyclic flow f with value |f| has O(n | f]| 12 flow edges

» Gyhas at most O(n | f] 1/2) directed edges when fis acyclic

» Algorithm: [Karger & Levine ’98]
While d augmenting path in Gf

by undi-edges in Gf
BFS on the contracted G which contains only O(n |f|1/2) di-edges
augment flow f, then decycle f

» Running time = O(m + nt>'?)

G.always has O(nt'?) edges, so total time = O(m+7 - nt'’?)
f

Blocking flows

Blocking flows

- Form a level graph by the distance from s in G,

level 1 level 2 level 3 level 4

Blocking flows

- Form a level graph by the distance from s in G,

* Find a maximal set of shortest disjoint aug-paths

level 1 level 2 level 3 level 4

Blocking flows

- Form a level graph by the distance from s in G,

* Find a maximal set of shortest disjoint aug-paths

« Dist(s,) in G increases

~~~~~

P >
Vs A Y
¢ N
¢ AN
'@ .
’ % '
’ ... .
'
.. .
.. .
Q
______ 1
e - Ot
[
) JPtide
) It
- @
.
N
.
.

-
~--‘

level 1 level 2 level3 ~  seeeeee level > 5



Blocking flows

» Repeat blocking-flows until Dist(s, 1) > L

- Residual flow in G;becomes at most O(n?*/L?%)

» Then apply Ford-Fulkerson O(n?/L?) times

~~~~~~~~~~

o’ *‘ ~‘
o' + ‘\
¢ AN \
‘o ‘ o ‘
’ . N Y
' . .
.)) .
. ' . 1
e 1 : e, 1
--‘O ' 1 —"'o ;
—————— h 1 —"-—-— '
s® o o -
QO: ok
1 ...
‘ Se
1
‘ O
O ;
) .)
' e '
s O’ A 0
‘))
.
.
.
..........

. Running time =L - BF +

L2

‘‘‘‘‘

L4
¢' s‘
¢ .
¢ AN
' Q :
’ .. .
’ .. '
)
... .
I .. 1
' O
e L 1
T oy T 1
......... L O ot
l ~~~~
‘ S
‘ ~~~~
| 0
) JPtaas
| e
O
.
.
N
N
.....
level L-1 level L

.FF = mn?"” [Goldberg & Rao '98]

Decycling + Blocking-flow

Lemma: [Karger & Levine '98]
Acyclic flow f with value | f| has O(n | f]

1/2) flow edges

Exists subgraph H C G with that

If we knew H beforehand, then applying blocking-flow
on H can compute max-flow in time

Ideally, shoot for O(m + n”°z1/?)

Decycling + blocking-flows
[Duan ’13]

Combining two techniques

- Compute a blocking-flow in G, where f'is acyclic

Take time O(n | f | 172 since undirected edges are contracted

- -
~~~~~~~~~~~~

.
LS . A e
A 3 4 A LN
A Y 4 A [N
N ’ AN Y
o : ‘0 ‘ o ‘

N ’ .. . !

N ’ .. . )

) ! ' . '

.~ Sl '} Sel 1
. 1 1 . ] . 1

. 1 , [
o 0 ! o I
...... 1 PPt 1 ! PPt 1
----- 1 __-—" 1 ! o PP ]
- .- 1 -
----------- 1
S o - O: - . O ot
RN 1 .
Seal 1
= ‘ O
O ; P
) JPtae
O~ : o
A ‘
.
.
.
.

-
- ~ -
-~ - e - -

level 1 level 2 level L-1 level L



Combining two techniques

- Compute a blocking-flow in G, where f'is acyclic

Take time O(n | f | 172 since undirected edges are contracted

- -
~~~~~~~~

~~~~~

-
- ~ -
-~ - e - -

level 1 level 2 level L-1 level L



Combining two techniques

- Compute a blocking-flow in G, where f'is acyclic

Take time O(n | f | 172 since undirected edges are contracted

» Augment flow f < f+Af, so Dist(s, 7) in Gyincreases

But now, f might contain cycles

-
~~~~~~~~

~~~~~

-
- ~ -
-~ - - S - -

level 1 level 2 level L-1 level L



Combining two techniques

« Augment flow f « f+Af, so Dist(s, 7) in Gyincreases

But now, f might contain cycles

sO Ot




Combining two techniques

« Augment flow f « f+Af, so Dist(s, 7) in Gyincreases

But now, f might contain cycles

-
-
-
-
-
-
-
-
-
-
-
-
-
.”
-

-~
~
~
~
-
-~
-~
-~
~
~
-~
-~

sO Ot

level i level i+1



Combining two techniques

« Augment flow f « f+Af, so Dist(s, 7) in Gyincreases

But now, f might contain cycles

* Decycling adds between level i & (i+1)

* Blocking-flows becomes costly as #undi-edges grows
Cannot contract these undirected edges

-
-
-
-
-
-
-
-
-
-
-
-
-
.”
-

-~
~
~
~
-
-~
-~
~
~
~
-~
-~

sO Ot

level i level i+1



Clustering

e Trouble: #undi-edges grows larger than nt
Computing blocking-flows becomes costly

1/2

e Key idea: [Duan’13] partition into star-subgraphs

 Partition vertices into
Viuv,

« V, is a union of star-graphs,
each of size > h

« Edges between V, is at
most O(nh)




Clustering

e Trouble: #undi-edges grows larger than nt
Computing blocking-flows becomes costly

1/2

e Key idea: [Duan’13] partition into star-subgraphs

 Partition vertices into
Viuv,

« V, is a union of star-graphs,
each of size > h

« Edges between V, is at
most O(nh)

greedy clustering



Clustering

Trouble: #undi-edges grows larger than nt
Computing blocking-flows becomes costly

1/2

Key idea: [Duan’13] partition into star-subgraphs

 Partition vertices into
Viuv,

« V, is a union of star-graphs,
each of size > h

« Edges between V, is at
most O(nh)

greedy clustering



Clustering

Trouble: #undi-edges grows larger than nt
Computing blocking-flows becomes costly

1/2

Key idea: [Duan’13] partition into star-subgraphs

 Partition vertices into
Viuv,

« V, is a union of star-graphs,
each of size > h

« Edges between V, is at
most O(nh)

greedy clustering



Dynamic maintenance

 Updates: augmentations turn undi-edgs to di-edges
di-edges from the clustering structure

* Need dynamic maintenance of the clustering structure

e Disconnects the vertex,
and move it downward

* |ncrease total degree by
at most O(n)

* Rebuild if total degree
exceeds nh




Dynamic maintenance

 Updates: augmentations turn undi-edgs to di-edges
di-edges from the clustering structure

* Need dynamic maintenance of the clustering structure

e Disconnects the vertex,
and move it downward

* |ncrease total degree by
at most O(n)

* Rebuild if total degree
exceeds nh




Dynamic maintenance

 Updates: augmentations turn undi-edgs to di-edges
di-edges from the clustering structure

* Need dynamic maintenance of the clustering structure

e Disconnects the vertex,
and move it downward

* |ncrease total degree by
at most O(n)

Increase
total-deg
by 2

 Rebuild if total degree
exceeds nh




Our technique

a more careful clustering scheme



Avoid rebuilding

* Previously in [Duan’13], the clustering scheme needs
frequent rebuilding procedures

e Solution: try to avoid rebuilding entirely

=/

star of size > / adjacent to stars avg low-deg < h




Avoid rebuilding

e Solution: try to avoid rebuilding entirely

 When a star edge is deleted, if it is not adjacent to stars,
either collect a new star, or move to low-degree part

=/

star of size > / adjacent to stars avg low-deg < h




Avoid rebuilding

e Solution: try to avoid rebuilding entirely

 When a star edge is deleted, if it is not adjacent to stars,
either collect a new star, or move to low-degree part

o ‘(“

star of size > / adjacent to stars avg low-deg < h




Avoid rebuilding

e Solution: try to avoid rebuilding entirely

 When a star edge is deleted, if it is not adjacent to stars,
either collect a new star, or move to low-degree part

star of size > / adjacent to avg low-deg < h



Avoid rebuilding

e Solution: try to avoid rebuilding entirely

 When a star edge is deleted, if it is not adjacent to stars,
either collect a new star, or move to low-degree part

move to

low-deg

star of size > / adjacent to stars w-deg <



Proof of concept

When 7 = O(n)

e [Duan’13] has running time for max-flow

 New clustering scheme already improves to 0(n2.25)



A multi-layer approach

 Handling a deletion needs to scan the adjacency list
Adjacency list can be as large as O(n)

e If adjacency list is large, then can have larger stars
Use multiple layers to handle different vertex degrees

Edge
deletion

star of size > / adjacent to stars avg low-deg < h



A multi-layer approach

adjacent
stars o stars low-deg

deg <nm deg < n/2



A multi-layer approach

adjacent adjacent
stars o stars stars o stars

low-deg




A multi-layer approach

adjacent adjacent adjacent
stars o stars stars o stars stars o stars

low-deg




A multi-layer approach

adjacent adjacent adjacent

stars o stars stars o stars stars {o stars low-deg

dog<cDh—  —deg< i

arboricity < n arboricity < n/2 arboricity < 2h  arboricity <




A multi-layer approach

adjacent adjacent adjacent

stars o stars stars o stars stars {o stars low-deg

arboricity < n arboricity < n/2 arboricity < 2h  arboricity <

How to utilize low arboricity?



Low arboricity

adjacent to stars



Low arboricity

star of size > n/2 adjacent to stars

Edge orientation such that out-degrees < n /2i-1



Low arboricity

star of size > n/2! adjacent to stars

Edge orientation such that out-degrees < n /2i-1

Two kinds of operations:

e Turn red vertices into
purple vertices

* Find stars among

purple vertices, and
turn them red ones




Low arboricity

e rs deletion

adjacent to stars

Two kinds of operations:

e Turn red vertices into
purple vertices

* Find stars among

purple vertices, and
turn them red ones




Low arboricity

star of size > n/2!

adjacent to stars

Two kinds of operations:

e Turn red vertices Into
purple vertices

* Find stars among
purple vertices, and
turn them red ones




Low arboricity

star of size > n/2 adjacentm

Two kinds of operations:

e Turn red vertices Into
purple vertices

* Find stars among

purple vertices, and
turn them red ones




Low arboricity

star of size > n/2!

adjacent to stars

To detect large stars,
need to explicitly store the induced
subgraph on purple vertices

When red —> purple
Need to scan adjacency-list to find
all purple neighbors which is costly




star of size > n/2!

Low arboricity

adjacent to stars

When red —> purple
Need to scan adjacency-list to find
all purple neighbors which is costly

Arboricity helps!

Purple vertices store in/out-purple
neighbors

Red vertices only store in-purple
neighbors




star of size > n/2!

Low arboricity

adjacent to stars

When red —> purple
Need to scan adjacency-list to find
all purple neighbors which is costly

Arboricity helps!

Purple vertices store in/out-purple
neighbors

Red vertices only store in-purple
neighbors

When red <—> purple
Only need to scan out-neighbors,

which is at most n/2'~1




Further questions

 How about deterministic max-flow in multi-graphs?

e ....In weighted graphs?



Further questions

 How about deterministic max-flow in multi-graphs?

e ....In weighted graphs?

Thanks for listening



