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Max-flows in simple graphs
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Capacities
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Terminals
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History
Reference Running time det / rand ?

[KL’98] det

[KL’02] rand

[Duan’13] det

Ours det

O(m + nτ3/2)

Õ(m + nτ)

Õ(n9/4τ1/8)

Õ(m + n5/3τ1/2)

n = #vertices, m = #edges

 = an upper bound on max-flowτ

Fastest when 
τ > n0.67



Flow decycling



• Residual graph  of  w.r.t flow Gf G f

Ford-Fulkerson

flow  in f G residual Gf

1

1

2

2

• Ford-Fulkerson: 
Keep finding augmenting paths from s to t in 


• Running time =  
 is a known upper bound on the max-flow value

Gf

Õ(mτ)
τ



• Lemma: [Karger & Levine ’98] 
Acyclic flow  with value  has  flow edges


•  has at most  directed edges when  is acyclic

f | f | O(n | f |1/2 )

Gf O(n | f |1/2 ) f

Flow decycling

decycle

many flow edges at most  flow edgesO(n | f |1/2 )



• Lemma: [Karger & Levine ’98] 
Acyclic flow  with value  has  flow edges


•  has at most  directed edges when  is acyclic

f | f | O(n | f |1/2 )

Gf O(n | f |1/2 ) f

• Algorithm: [Karger & Levine ’98] 
While  augmenting path in  
       contract all connected components by undi-edges in  
       BFS on the contracted  which contains only  di-edges 
       augment flow , then decycle 

∃ Gf
Gf

Gf O(n | f |1/2 )
f f

• Running time =  

 always has  edges, so total time = 

Õ(m + nτ3/2)
Gf O(nτ1/2) Õ(m+τ ⋅ nτ1/2)

Flow decycling



Blocking flows
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• Form a level graph by the distance from s in Gf
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level 1 level 2 level 3 level 4



• Form a level graph by the distance from s in 


• Find a maximal set of shortest disjoint aug-paths
Gf

s t

level 1 level 2 level 3 level 4

Blocking flows



• Form a level graph by the distance from s in 


• Find a maximal set of shortest disjoint aug-paths


•  in  increases

Gf

Dist(s, t) Gf

s t

level 1 level 2 level 3 level  5≥………

Blocking flows



• Repeat blocking-flows until 


• Residual flow in  becomes at most 


• Then apply Ford-Fulkerson  times

Dist(s, t) ≥ L
Gf O(n2/L2)

O(n2/L2)

s t

level 1 level 2 level L-1

………

level L

• Running time = BF + FF =  [Goldberg & Rao ’98]L ⋅ n2

L2
⋅ mn2/3

Blocking flows



Decycling + Blocking-flow

• Lemma: [Karger & Levine ’98] 
Acyclic flow  with value  has  flow edges


• Exists subgraph  with  edges that 
contains the max-flow


• If we knew  beforehand, then applying blocking-flow 
on  can compute max-flow in  time


• Ideally, shoot for 

f | f | O(n | f |1/2 )

H ⊆ G O(nτ1/2)

H
H Õ(n5/3τ1/2)

Õ(m + n5/3τ1/2)



Decycling + blocking-flows 
[Duan ’13]



Combining two techniques
• Compute a blocking-flow in  where  is acyclic 

Take time  since undirected edges are contracted

Gf f
Õ(n | f |1/2 )

s t

level 1 level 2 level L-1

………

level L
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Combining two techniques
• Compute a blocking-flow in  where  is acyclic 

Take time  since undirected edges are contracted


• Augment flow , so  in  increases 
But now,  might contain cycles

Gf f
Õ(n | f |1/2 )

f ← f+Δf Dist(s, t) Gf
f

s t

level 1 level 2 level L-1

………

level L
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Combining two techniques
• Augment flow , so  in  increases 

But now,  might contain cycles


• Decycling adds undirected edges between level i & (i+1)


• Blocking-flows becomes costly as #undi-edges grows 
Cannot contract these undirected edges

f ← f+Δf Dist(s, t) Gf
f

level i level i+1

s t



Clustering
• Trouble: #undi-edges grows larger than  

Computing blocking-flows becomes costly


• Key idea: [Duan’13] partition into star-subgraphs

nτ1/2

• Partition vertices into 



•  is a union of star-graphs, 
each of size 


• Edges between  is at 
most 

V1 ∪ V2

V1
≥ h

V2
O(nh)
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• Updates: augmentations turn undi-edgs to di-edges 
Delete di-edges from the clustering structure


• Need dynamic maintenance of the clustering structure

Deletion of star edges:


• Disconnects the vertex, 
and move it downward


• Increase total degree by  
at most 


• Rebuild if total degree  
exceeds 

O(n)

nh

Dynamic maintenance
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• Updates: augmentations turn undi-edgs to di-edges 
Delete di-edges from the clustering structure


• Need dynamic maintenance of the clustering structure

Deletion of star edges:


• Disconnects the vertex, 
and move it downward


• Increase total degree by  
at most 


• Rebuild if total degree  
exceeds 

O(n)

nh

Dynamic maintenance

Increase  
total-deg 

by 2



Our technique 
a more careful clustering scheme



• Previously in [Duan’13], the clustering scheme needs 
frequent rebuilding procedures


• Solution: try to avoid rebuilding entirely

Avoid rebuilding

star of size ≥ h adjacent to stars avg low-deg < h



• Solution: try to avoid rebuilding entirely


• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

star of size ≥ h adjacent to stars avg low-deg < h



• Solution: try to avoid rebuilding entirely


• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

Edge 
deletion

star of size ≥ h adjacent to stars avg low-deg < h



adjacent to stars

• Solution: try to avoid rebuilding entirely


• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

new  
clusterstar of size ≥ h avg low-deg < h



avg low-deg < hstar of size ≥ h adjacent to stars

• Solution: try to avoid rebuilding entirely


• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

move to 
low-deg



Proof of concept

When 


• [Duan’13] has running time  for max-flow


• New clustering scheme already improves to 

τ = Θ(n)

Õ(n2.375)

Õ(n2.25)



A multi-layer approach
• Handling a deletion needs to scan the adjacency list 

Adjacency list can be as large as 


• If adjacency list is large, then can have larger stars 
Use multiple layers to handle different vertex degrees

O(n)

star of size ≥ h adjacent to stars

Edge 
deletion

avg low-deg < h



A multi-layer approach
low-deg

adjacent 
to starsstars

deg ≤ n deg ≤ n /2



A multi-layer approach
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A multi-layer approach

………

low-degadjacent 
to starsstars

adjacent 
to starsstars

adjacent 
to starsstars

deg ≤ n

………

deg ≤ n /2i deg ≤ 2h deg ≤ h

arboricity ≤ n arboricity ≤ n /2i arboricity ≤ 2h arboricity ≤ h

How to utilize low arboricity?
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Low arboricity

adjacent to stars
new  

cluster

Two kinds of operations:


• Turn red vertices into 
purple vertices


• Find stars among 
purple vertices, and 
turn them red ones

star of size ≥ n /2i



Low arboricity

adjacent to stars

• To detect large stars, 
need to explicitly store the induced 
subgraph on purple vertices


• When red —> purple 
Need to scan adjacency-list to find 
all purple neighbors which is costly

star of size ≥ n /2i
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Low arboricity

adjacent to stars

• When red —> purple 
Need to scan adjacency-list to find 
all purple neighbors which is costly


• Arboricity helps! 

• Purple vertices store in/out-purple 
neighbors


• Red vertices only store in-purple 
neighbors


• When red <—> purple 
Only need to scan out-neighbors, 
which is at most n/2i−1

star of size ≥ n /2i
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• How about deterministic max-flow in multi-graphs?


• …. in weighted graphs?
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Thanks for listening


