Deterministic Max-Flows in Simple Graphs

Tianyi Zhang, Tsinghua Univ.

Max-flows in simple graphs

Graph $G=(V, E)$

- n vertices
- m edges
- No parallel edges

Capacities

- Unit

Terminals

- $s, t \in V$

Max-flows in simple graphs

Graph $G=(V, E)$

- n vertices
- m edges
- No parallel edges

Capacities

- Unit

Terminals

- $s, t \in V$

max-flow has value 2

History

Reference
 Running time
 det / rand ?

[KL'98] $\quad O\left(m+n \tau^{3 / 2}\right) \operatorname{det}$
[KL'02] $\quad \tilde{O}(m+n \tau) \quad$ rand
[Duan'13] $\tilde{O}\left(n^{9 / 4} \tau^{1 / 8}\right) \operatorname{det}$

Ours $\quad \tilde{O}\left(m+n^{5 / 3} \tau^{1 / 2}\right) \quad \operatorname{det}$

$$
\begin{gathered}
\mathrm{n}=\# \text { vertices, } \mathrm{m}=\# \text { edges } \\
\tau=\text { an upper bound on max-flow }
\end{gathered}
$$

Flow decycling

Ford-Fulkerson

- Residual graph G_{f} of G w.r.t flow f

- Ford-Fulkerson:

Keep finding augmenting paths from s to t in G_{f}

- Running time $=\tilde{O}(m \tau)$
τ is a known upper bound on the max-flow value

Flow decycling

- Lemma: [Karger \& Levine '98] Acyclic flow f with value $|f|$ has $O\left(n|f|^{1 / 2}\right)$ flow edges
- G_{f} has at most $O\left(n|f|^{1 / 2}\right)$ directed edges when f is acyclic

many flow edges

at most $O\left(n|f|^{1 / 2}\right)$ flow edges

Flow decycling

- Lemma: [Karger \& Levine '98] Acyclic flow f with value $|f|$ has $O\left(n|f|^{1 / 2}\right)$ flow edges
- G_{f} has at most $O\left(n|f|^{1 / 2}\right)$ directed edges when f is acyclic
- Algorithm: [Karger \& Levine '98] While \exists augmenting path in G_{f}
contract all connected components by undi-edges in G_{f} BFS on the contracted G_{f} which contains only $O\left(n|f|^{1 / 2}\right)$ di-edges augment flow f, then decycle f
- Running time $=\tilde{O}\left(m+n \tau^{3 / 2}\right)$
G_{f} always has $O\left(n \tau^{1 / 2}\right)$ edges, so total time $=\tilde{O}\left(m+\tau \cdot n \tau^{1 / 2}\right)$

Blocking flows

Blocking flows

- Form a level graph by the distance from s in G_{f}

Blocking flows

- Form a level graph by the distance from s in G_{f}
- Find a maximal set of shortest disjoint aug-paths

Blocking flows

- Form a level graph by the distance from s in G_{f}
- Find a maximal set of shortest disjoint aug-paths
- $\operatorname{Dist}(s, t)$ in G_{f} increases

Ot

Blocking flows

- Repeat blocking-flows until $\operatorname{Dist}(s, t) \geq L$
- Residual flow in G_{f} becomes at most $O\left(n^{2} / L^{2}\right)$
- Then apply Ford-Fulkerson $O\left(n^{2} / L^{2}\right)$ times

- Running time $=L \cdot \mathrm{BF}+\frac{n^{2}}{L^{2}} \cdot \mathrm{FF}=m n^{2 / 3}$ [Goldberg \& Rao '98]

Decycling + Blocking-flow

- Lemma: [Karger \& Levine '98] Acyclic flow f with value $|f|$ has $O\left(n|f|^{1 / 2}\right)$ flow edges
- Exists subgraph $H \subseteq G$ with $O\left(n \tau^{1 / 2}\right)$ edges that contains the max-flow
- If we knew H beforehand, then applying blocking-flow on H can compute max-flow in $\tilde{O}\left(n^{5 / 3} \tau^{1 / 2}\right)$ time
- Ideally, shoot for $\tilde{O}\left(m+n^{5 / 3} \tau^{1 / 2}\right)$

Decycling + blocking-flows [Duan '13]

Combining two techniques

- Compute a blocking-flow in G_{f} where f is acyclic

Take time $\tilde{O}\left(n|f|^{1 / 2}\right)$ since undirected edges are contracted

Combining two techniques

- Compute a blocking-flow in G_{f} where f is acyclic Take time $\tilde{O}\left(n|f|^{1 / 2}\right)$ since undirected edges are contracted

Combining two techniques

- Compute a blocking-flow in G_{f} where f is acyclic Take time $\tilde{O}\left(n|f|^{1 / 2}\right)$ since undirected edges are contracted
- Augment flow $f \leftarrow f+\Delta f$, so $\operatorname{Dist}(s, t)$ in G_{f} increases But now, f might contain cycles

Combining two techniques

- Augment flow $f \leftarrow f+\Delta f$, so $\operatorname{Dist}(s, t)$ in G_{f} increases But now, f might contain cycles
so

level \mathbf{i}
level i+1

Combining two techniques

- Augment flow $f \leftarrow f+\Delta f$, so $\operatorname{Dist}(s, t)$ in G_{f} increases But now, f might contain cycles

Combining two techniques

- Augment flow $f \leftarrow f+\Delta f$, so $\operatorname{Dist}(s, t)$ in G_{f} increases But now, f might contain cycles
- Decycling adds undirected edges between level i \& (i+1)
- Blocking-flows becomes costly as \#undi-edges grows Cannot contract these undirected edges

Clustering

- Trouble: \#undi-edges grows larger than $n \tau^{1 / 2}$ Computing blocking-flows becomes costly
- Key idea: [Duan'13] partition into star-subgraphs
- Partition vertices into
$V_{1} \cup V_{2}$
- V_{1} is a union of star-graphs, each of size $\geq h$
- Edges between V_{2} is at most $O(n h)$

Clustering

- Trouble: \#undi-edges grows larger than $n \tau^{1 / 2}$ Computing blocking-flows becomes costly
- Key idea: [Duan'13] partition into star-subgraphs
- Partition vertices into
$V_{1} \cup V_{2}$
- V_{1} is a union of star-graphs, each of size $\geq h$
- Edges between V_{2} is at most $O(n h)$

greedy clustering

Clustering

- Trouble: \#undi-edges grows larger than $n \tau^{1 / 2}$ Computing blocking-flows becomes costly
- Key idea: [Duan'13] partition into star-subgraphs
- Partition vertices into
$V_{1} \cup V_{2}$
- V_{1} is a union of star-graphs, each of size $\geq h$
- Edges between V_{2} is at most $O(n h)$

greedy clustering

Clustering

- Trouble: \#undi-edges grows larger than $n \tau^{1 / 2}$ Computing blocking-flows becomes costly
- Key idea: [Duan'13] partition into star-subgraphs
- Partition vertices into
$V_{1} \cup V_{2}$
- V_{1} is a union of star-graphs, each of size $\geq h$
- Edges between V_{2} is at most $O(n h)$

greedy clustering

Dynamic maintenance

- Updates: augmentations turn undi-edgs to di-edges Delete di-edges from the clustering structure
- Need dynamic maintenance of the clustering structure

Deletion of star edges:
-Disconnects the vertex, and move it downward - Increase total degree by at most $O(n)$ - Rebuild if total degree exceeds $n h$

Dynamic maintenance

- Updates: augmentations turn undi-edgs to di-edges Delete di-edges from the clustering structure
- Need dynamic maintenance of the clustering structure

Deletion of star edges:
-Disconnects the vertex, and move it downward - Increase total degree by at most $O(n)$ - Rebuild if total degree exceeds $n h$

Dynamic maintenance

- Updates: augmentations turn undi-edgs to di-edges Delete di-edges from the clustering structure
- Need dynamic maintenance of the clustering structure

Deletion of star edges:
-Disconnects the vertex, and move it downward - Increase total degree by at most $O(n)$ - Rebuild if total degree exceeds $n h$

Our technique
 a more careful clustering scheme

Avoid rebuilding

- Previously in [Duan'13], the clustering scheme needs frequent rebuilding procedures
- Solution: try to avoid rebuilding entirely

Avoid rebuilding

- Solution: try to avoid rebuilding entirely
- When a star edge is deleted, if it is not adjacent to stars, either collect a new star, or move to low-degree part

Avoid rebuilding

- Solution: try to avoid rebuilding entirely
- When a star edge is deleted, if it is not adjacent to stars, either collect a new star, or move to low-degree part

Avoid rebuilding

- Solution: try to avoid rebuilding entirely
- When a star edge is deleted, if it is not adjacent to stars, either collect a new star, or move to low-degree part

Avoid rebuilding

- Solution: try to avoid rebuilding entirely
- When a star edge is deleted, if it is not adjacent to stars, either collect a new star, or move to low-degree part

Proof of concept

When $\tau=\Theta(n)$

- [Duan'13] has running time $\tilde{O}\left(n^{2.375}\right)$ for max-flow
- New clustering scheme already improves to $\tilde{O}\left(n^{2.25}\right)$

A multi-layer approach

- Handling a deletion needs to scan the adjacency list Adjacency list can be as large as $O(n)$
- If adjacency list is large, then can have larger stars Use multiple layers to handle different vertex degrees

A multi-layer approach

$\operatorname{deg} \leq n$
low-deg

$\operatorname{deg} \leq n / 2$

A multi-layer approach

$\operatorname{deg} \leq n$

$\operatorname{deg} \leq n / 2^{i}$
low-deg

$\operatorname{deg} \leq n / 2^{i+1}$

A multi-layer approach

$\operatorname{deg} \leq n$

$\operatorname{deg} \leq n / 2^{i}$

$\operatorname{deg} \leq 2 h$
$\operatorname{deg} \leq h$

A multi-layer approach

arboricity $\leq n$

des $=\frac{n d i}{i}$
arboricity $\leq n / 2^{i}$

arboricity $\leq 2 h \quad$ arboricity $\leq h$

A multi-layer approach

$$
\operatorname{dog} \leq n
$$

arboricity $\leq n$

- des $=\frac{1}{2}$
arboricity $\leq n / 2^{i}$

$$
\frac{d e g}{d} \leq 2 h
$$

arboricity $\leq 2 h \quad$ arboricity $\leq h$

How to utilize low arboricity?

Low arboricity

star of size $\geq n / 2^{i}$
adjacent to stars

Low arboricity

star of size $\geq n / 2^{i}$
adjacent to stars

Edge orientation such that out-degrees $\leq n / 2^{i-1}$

Low arboricity

Two kinds of operations:

- Turn red vertices into purple vertices
- Find stars among purple vertices, and turn them red ones
adjacent to stars

Edge orientation such that out-degrees $\leq n / 2^{i-1}$

Low arboricity

Two kinds of operations:

- Turn red vertices into purple vertices
- Find stars among purple vertices, and turn them red ones

Low arboricity

Two kinds of operations:

- Turn red vertices into purple vertices
- Find stars among purple vertices, and turn them red ones
adjacent to stars

Low arboricity

Two kinds of operations:

- Turn red vertices into purple vertices
- Find stars among purple vertices, and turn them red ones
new
star of size $\geq n / 2^{i}$

Low arboricity

star of size $\geq n / 2^{i}$
adjacent to stars

- To detect large stars, need to explicitly store the induced subgraph on purple vertices
- When red -> purple Need to scan adjacency-list to find all purple neighbors which is costly

Low arboricity

star of size $\geq n / 2^{i}$

- When red -> purple Need to scan adjacency-list to find all purple neighbors which is costly
- Arboricity helps!
- Purple vertices store in/out-purple neighbors
- Red vertices only store in-purple neighbors

Low arboricity

star of size $\geq n / 2^{i}$

- When red -> purple Need to scan adjacency-list to find all purple neighbors which is costly
- Arboricity helps!
- Purple vertices store in/out-purple neighbors
- Red vertices only store in-purple neighbors
- When red <-> purple Only need to scan out-neighbors, which is at most $n / 2^{i-1}$

Further questions

- How about deterministic max-flow in multi-graphs?
- in weighted graphs?

Further questions

- How about deterministic max-flow in multi-graphs?
- in weighted graphs?

Thanks for listening

