
Deterministic Max-Flows
in Simple Graphs

Tianyi Zhang, Tsinghua Univ.

Max-flows in simple graphs

Graph

• n vertices

• m edges

• No parallel

edges

Capacities

• Unit

Terminals

•

G = (V, E)

s, t ∈ V
s t

Max-flows in simple graphs

Graph

• n vertices

• m edges

• No parallel

edges

Capacities

• Unit

Terminals

•

G = (V, E)

s, t ∈ V
s t

max-flow has value 2

History
Reference Running time det / rand ?

[KL’98] det

[KL’02] rand

[Duan’13] det

Ours det

O(m + nτ3/2)

Õ(m + nτ)

Õ(n9/4τ1/8)

Õ(m + n5/3τ1/2)

n = #vertices, m = #edges

 = an upper bound on max-flowτ

Fastest when
τ > n0.67

Flow decycling

• Residual graph of w.r.t flow Gf G f

Ford-Fulkerson

flow in f G residual Gf

1

1

2

2

• Ford-Fulkerson: 
Keep finding augmenting paths from s to t in

• Running time =  
 is a known upper bound on the max-flow value

Gf

Õ(mτ)
τ

• Lemma: [Karger & Levine ’98] 
Acyclic flow with value has flow edges

• has at most directed edges when is acyclic

f | f | O(n | f |1/2)

Gf O(n | f |1/2) f

Flow decycling

decycle

many flow edges at most flow edgesO(n | f |1/2)

• Lemma: [Karger & Levine ’98] 
Acyclic flow with value has flow edges

• has at most directed edges when is acyclic

f | f | O(n | f |1/2)

Gf O(n | f |1/2) f

• Algorithm: [Karger & Levine ’98] 
While augmenting path in  
 contract all connected components by undi-edges in  
 BFS on the contracted which contains only di-edges 
 augment flow , then decycle

∃ Gf
Gf

Gf O(n | f |1/2)
f f

• Running time =  

 always has edges, so total time =

Õ(m + nτ3/2)
Gf O(nτ1/2) Õ(m+τ ⋅ nτ1/2)

Flow decycling

Blocking flows

Blocking flows
• Form a level graph by the distance from s in Gf

s t

level 1 level 2 level 3 level 4

• Form a level graph by the distance from s in

• Find a maximal set of shortest disjoint aug-paths
Gf

s t

level 1 level 2 level 3 level 4

Blocking flows

• Form a level graph by the distance from s in

• Find a maximal set of shortest disjoint aug-paths

• in increases

Gf

Dist(s, t) Gf

s t

level 1 level 2 level 3 level 5≥………

Blocking flows

• Repeat blocking-flows until

• Residual flow in becomes at most

• Then apply Ford-Fulkerson times

Dist(s, t) ≥ L
Gf O(n2/L2)

O(n2/L2)

s t

level 1 level 2 level L-1

………

level L

• Running time = BF + FF = [Goldberg & Rao ’98]L ⋅ n2

L2
⋅ mn2/3

Blocking flows

Decycling + Blocking-flow

• Lemma: [Karger & Levine ’98] 
Acyclic flow with value has flow edges

• Exists subgraph with edges that
contains the max-flow

• If we knew beforehand, then applying blocking-flow
on can compute max-flow in time

• Ideally, shoot for

f | f | O(n | f |1/2)

H ⊆ G O(nτ1/2)

H
H Õ(n5/3τ1/2)

Õ(m + n5/3τ1/2)

Decycling + blocking-flows
[Duan ’13]

Combining two techniques
• Compute a blocking-flow in where is acyclic 

Take time since undirected edges are contracted

Gf f
Õ(n | f |1/2)

s t

level 1 level 2 level L-1

………

level L

Combining two techniques
• Compute a blocking-flow in where is acyclic 

Take time since undirected edges are contracted

Gf f
Õ(n | f |1/2)

s t

level 1 level 2 level L-1

………

level L

Combining two techniques
• Compute a blocking-flow in where is acyclic 

Take time since undirected edges are contracted

• Augment flow , so in increases 
But now, might contain cycles

Gf f
Õ(n | f |1/2)

f ← f+Δf Dist(s, t) Gf
f

s t

level 1 level 2 level L-1

………

level L

Combining two techniques
• Augment flow , so in increases 

But now, might contain cycles
f ← f+Δf Dist(s, t) Gf

f

level i level i+1

s t

Combining two techniques
• Augment flow , so in increases 

But now, might contain cycles
f ← f+Δf Dist(s, t) Gf

f

level i level i+1

s t

Combining two techniques
• Augment flow , so in increases 

But now, might contain cycles

• Decycling adds undirected edges between level i & (i+1)

• Blocking-flows becomes costly as #undi-edges grows 
Cannot contract these undirected edges

f ← f+Δf Dist(s, t) Gf
f

level i level i+1

s t

Clustering
• Trouble: #undi-edges grows larger than  

Computing blocking-flows becomes costly

• Key idea: [Duan’13] partition into star-subgraphs

nτ1/2

• Partition vertices into

• is a union of star-graphs,
each of size

• Edges between is at
most

V1 ∪ V2

V1
≥ h

V2
O(nh)

• Trouble: #undi-edges grows larger than  
Computing blocking-flows becomes costly

• Key idea: [Duan’13] partition into star-subgraphs

nτ1/2

• Partition vertices into

• is a union of star-graphs,
each of size

• Edges between is at
most

V1 ∪ V2

V1
≥ h

V2
O(nh)

greedy clustering

Clustering

• Trouble: #undi-edges grows larger than  
Computing blocking-flows becomes costly

• Key idea: [Duan’13] partition into star-subgraphs

nτ1/2

• Partition vertices into

• is a union of star-graphs,
each of size

• Edges between is at
most

V1 ∪ V2

V1
≥ h

V2
O(nh)

greedy clustering

Clustering

• Trouble: #undi-edges grows larger than  
Computing blocking-flows becomes costly

• Key idea: [Duan’13] partition into star-subgraphs

nτ1/2

• Partition vertices into

• is a union of star-graphs,
each of size

• Edges between is at
most

V1 ∪ V2

V1
≥ h

V2
O(nh)

greedy clustering

Clustering

• Updates: augmentations turn undi-edgs to di-edges 
Delete di-edges from the clustering structure

• Need dynamic maintenance of the clustering structure

Deletion of star edges:

• Disconnects the vertex,
and move it downward

• Increase total degree by  
at most

• Rebuild if total degree  
exceeds

O(n)

nh

Dynamic maintenance

• Updates: augmentations turn undi-edgs to di-edges 
Delete di-edges from the clustering structure

• Need dynamic maintenance of the clustering structure

Deletion of star edges:

• Disconnects the vertex,
and move it downward

• Increase total degree by  
at most

• Rebuild if total degree  
exceeds

O(n)

nh

Dynamic maintenance

Edge
deletion

• Updates: augmentations turn undi-edgs to di-edges 
Delete di-edges from the clustering structure

• Need dynamic maintenance of the clustering structure

Deletion of star edges:

• Disconnects the vertex,
and move it downward

• Increase total degree by  
at most

• Rebuild if total degree  
exceeds

O(n)

nh

Dynamic maintenance

Increase
total-deg

by 2

Our technique
a more careful clustering scheme

• Previously in [Duan’13], the clustering scheme needs
frequent rebuilding procedures

• Solution: try to avoid rebuilding entirely

Avoid rebuilding

star of size ≥ h adjacent to stars avg low-deg < h

• Solution: try to avoid rebuilding entirely

• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

star of size ≥ h adjacent to stars avg low-deg < h

• Solution: try to avoid rebuilding entirely

• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

Edge
deletion

star of size ≥ h adjacent to stars avg low-deg < h

adjacent to stars

• Solution: try to avoid rebuilding entirely

• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

new
clusterstar of size ≥ h avg low-deg < h

avg low-deg < hstar of size ≥ h adjacent to stars

• Solution: try to avoid rebuilding entirely

• When a star edge is deleted, if it is not adjacent to stars, 
either collect a new star, or move to low-degree part

Avoid rebuilding

move to
low-deg

Proof of concept

When

• [Duan’13] has running time for max-flow

• New clustering scheme already improves to

τ = Θ(n)

Õ(n2.375)

Õ(n2.25)

A multi-layer approach
• Handling a deletion needs to scan the adjacency list 

Adjacency list can be as large as

• If adjacency list is large, then can have larger stars 
Use multiple layers to handle different vertex degrees

O(n)

star of size ≥ h adjacent to stars

Edge
deletion

avg low-deg < h

A multi-layer approach
low-deg

adjacent
to starsstars

deg ≤ n deg ≤ n /2

A multi-layer approach

………

low-degadjacent
to starsstars

adjacent
to starsstars

deg ≤ n deg ≤ n /2i deg ≤ n /2i+1

A multi-layer approach

………

low-degadjacent
to starsstars

adjacent
to starsstars

adjacent
to starsstars

deg ≤ n

………

deg ≤ n /2i deg ≤ 2h deg ≤ h

A multi-layer approach

………

low-degadjacent
to starsstars

adjacent
to starsstars

adjacent
to starsstars

deg ≤ n

………

deg ≤ n /2i deg ≤ 2h deg ≤ h

arboricity ≤ n arboricity ≤ n /2i arboricity ≤ 2h arboricity ≤ h

A multi-layer approach

………

low-degadjacent
to starsstars

adjacent
to starsstars

adjacent
to starsstars

deg ≤ n

………

deg ≤ n /2i deg ≤ 2h deg ≤ h

arboricity ≤ n arboricity ≤ n /2i arboricity ≤ 2h arboricity ≤ h

How to utilize low arboricity?

Low arboricity

star of size ≥ n /2i adjacent to stars

Low arboricity

star of size ≥ n /2i adjacent to stars

Edge orientation such that out-degrees ≤ n /2i−1

Low arboricity

star of size ≥ n /2i adjacent to stars

Edge orientation such that out-degrees ≤ n /2i−1

Two kinds of operations:

• Turn red vertices into
purple vertices

• Find stars among
purple vertices, and
turn them red ones

Low arboricity

adjacent to stars

Two kinds of operations:

• Turn red vertices into
purple vertices

• Find stars among
purple vertices, and
turn them red ones

star of size ≥ n /2i
Edge

deletion

Low arboricity

adjacent to stars

Two kinds of operations:

• Turn red vertices into
purple vertices

• Find stars among
purple vertices, and
turn them red ones

star of size ≥ n /2i

Low arboricity

adjacent to stars
new

cluster

Two kinds of operations:

• Turn red vertices into
purple vertices

• Find stars among
purple vertices, and
turn them red ones

star of size ≥ n /2i

Low arboricity

adjacent to stars

• To detect large stars, 
need to explicitly store the induced
subgraph on purple vertices

• When red —> purple 
Need to scan adjacency-list to find
all purple neighbors which is costly

star of size ≥ n /2i

Low arboricity

adjacent to stars

• When red —> purple 
Need to scan adjacency-list to find
all purple neighbors which is costly

• Arboricity helps!

• Purple vertices store in/out-purple
neighbors

• Red vertices only store in-purple
neighbors

star of size ≥ n /2i

Low arboricity

adjacent to stars

• When red —> purple 
Need to scan adjacency-list to find
all purple neighbors which is costly

• Arboricity helps!

• Purple vertices store in/out-purple
neighbors

• Red vertices only store in-purple
neighbors

• When red <—> purple 
Only need to scan out-neighbors,
which is at most n/2i−1

star of size ≥ n /2i

Further questions

• How about deterministic max-flow in multi-graphs?

• …. in weighted graphs?

Further questions

• How about deterministic max-flow in multi-graphs?

• …. in weighted graphs?

Thanks for listening

