Dynamic Low Stretch Spanning Trees in Sub-polynomial Time

Shiri Chechik, Tianyi Zhang

Tel Aviv University, Tsinghua University

Sparsification

Approximate dense objects using sparse objects

masonry arch

truss arch

This example is taken from www.cosy.sbg.ac.at/~sk/talks/Salzburg2017.pdf

Graph sparsification

- Let G = (V, E) be an undirected (multi-)graph
- Want to reduce number of edges while preserving certain graph properties
- Example:
 - (Spanners) Every graph has a subgraph with $O(n^{1.5})$ edges that 3-approximates pairwise distances
- What if we want to sparsify G as a spanning tree?

Definition: low-stretch spanning trees

- Let T be a spanning tree of graph G
- Want low average stretch of T:

stretch of
$$T = \frac{1}{|E|} \sum_{(u,v) \in E} \operatorname{dist}_T(u,v)$$

History of low-stretch trees

Reference	Average stretch	Construction time
[Alon+'95]	$\Omega(\log n)$	
[Alon+'95]	$2^{O(\sqrt{\log n \cdot \log \log n})}$	$ ilde{O}(m)$
[Elk+'08]	$O(\log^2 n \log \log n)$	$ ilde{O}(m)$
[ABN'09]	$O(\log n \cdot \log \log n$ $\cdot (\log \log \log n)^3)$	$ ilde{O}(m)$
[AN'12]	$O(\log n \cdot \log \log n)$	$ ilde{O}(m)$

n = # vertices, m = # edges

The dynamic setting

Our world keeps changing

change of network topologies

change of traffic conditions

Definition: dynamic low-stretch trees

- ullet Graph G suffers a sequence of edge insertions / deletions
- Want to maintain a spanning tree
 - Low average stretch, say $n^{o(1)}$
 - Fast update time, ideally $\log^{O(1)} n$
- Raised in [BKS'12]; first studied in [FG'19]

Our results

• [FG'19]

Average stretch: $n^{o(1)}$

Randomized update time: $n^{1/2+o(1)}$

• [CZ'20]

Average stretch: $n^{o(1)}$

Randomized update time: $n^{o(1)}$

- Extend to weighted graphs but only with edge deletions
- In this talk, we only focus on unweighted graphs

An overview of [Alon+'95]

Low diameter decomposition

Definition: A β -decomposition is a partition of V into clusters C_1, C_2, \cdots, C_k such that:

- (1) diameter of each $G[C_i]$ is $\leq O(\frac{\log n}{\beta})$
- (2) number of inter-cluster edges is $\leq \beta m$

$$G_h$$

Low-stretch spanning tree

Average stretch

- Diameter of node in G_i is at most $(\log n/\beta)^i$
- Number of edges in G_i is at most $\beta^i m$
- Stretch of any intra-cluster edge in $G_i \setminus G_{i+1}$ is $(\log n/\beta)^{i+1}$
- Total stretch becomes $m^{1+o(1)}$

contracted graph G_i

$$\mathbf{dist}_T(u, v) \le (\log n/\beta)^{i+1}$$

$$\sum_{(u,v)\in G_i\backslash G_{i+1}} \mathbf{dist}_T(u,v) \le m \log^{i+1} n/\beta$$

$$\sum_{0\le i\le h} \sum_{(u,v)\in G_i\backslash G_{i+1}} \mathbf{dist}_T(u,v) \le m \log^{h+1} n/\beta$$

$$\le m^{1+o(1)}$$

 $h = \sqrt{\log n}, \beta = m^{-1/h}$

An overview of [FG'19]

- Lemma: [FG'19]
 - A β -decomposition can be maintained under edge deletions such that:
 - (1) total update time is $\tilde{O}(m/\beta)$
 - (2) total number of changes to inter-cluster edges is $\tilde{O}(m)$

- Lemma: [FG'19]
 - A β -decomposition can be maintained under edge deletions such that:
 - (1) total update time is $\tilde{O}(m/\beta)$
 - (2) total number of changes to inter-cluster edges is $\tilde{O}(m)$

- Lemma: [FG'19]
 - A β -decomposition can be maintained under edge deletions such that:
 - (1) total update time is $\tilde{O}(m/\beta)$
 - (2) total number of changes to inter-cluster edges is O(m)

update the β -decomposition

- Lemma: [FG'19]
 - A β -decomposition can be maintained under edge deletions such that:
 - (1) total update time is $\tilde{O}(m/\beta)$
 - (2) total number of changes to inter-cluster edges is O(m)

Fully dynamic low-diameter decomposition

- <u>Lemma:</u> [FG'19]
 - A β -decomposition can be maintained under edge updates such that:
 - (1) amortized update time is $\tilde{O}(1/\beta^2)$
 - (2) amortized changes to inter-cluster edges is $\tilde{O}(1/\beta)$
- Handle edge insertions lazily

Apply decremental β -decomposition, and ignore all edge insertions, and rebuild after every βm edge updates

• Amortized changes
$$\approx \frac{\text{total changes}}{\text{total updates}} = \frac{m}{\beta m} = 1/\beta$$

- Overall update time $\approx (1/\beta)^{h+2} + m\beta^h = m^{0.5+o(1)}$
- Graph sparsification can improve $m^{0.5+o(1)}$ to $n^{0.5+o(1)}$

Our improvement

Reducing total changes to inter-cluster edges

• <u>Lemma:</u> [FG'19]

A β -decomposition can be maintained under edge deletions such that:

- (1) total update time is $\tilde{O}(m/\beta)$
- (2) total number of changes to inter-cluster is $\tilde{O}(m)$

• Lemma:

A β -decomposition can be maintained under edge deletions such that:

- (1) total update time is $\tilde{O}(m/\beta)$
- (2) total number of changes to inter-cluster is $O(\beta \cdot m)$

Fully dynamic low-diameter decomposition

• Lemma:

A β -decomposition can be maintained under edge updates such that:

- (1) amortized update time is $\tilde{O}(1/\beta^2)$
- (2) amortized changes to inter-cluster edges is O(1)
- Handle edge insertions lazily

Apply decremental β -decomposition, and ignore all edge insertions, and rebuild after every βm edge updates

• Amortized changes
$$\approx \frac{\text{total changes}}{\text{total updates}} = \frac{\beta m}{\beta m} = 1$$

- Overall update time $\approx (1/\beta)^{h+2} + m\beta^h = m^{0.5+o(1)}$ Overall update time $\approx \beta^{-2} \log^h n + m\beta^h = n^{o(1)}$
- Graph sparsification can improve $m^{0.5+o(1)}$ to $n^{0.5+o(1)}$

In cluster C, u becomes too far away $\operatorname{dist}_T(r,u) > \frac{10\log n}{\beta}$

In cluster C, u becomes too far away $\operatorname{dist}_T(r,u) > \frac{10\log n}{\beta}$

Grow a ball C_1 centered at u with radius $\leq \log n/\beta$

In cluster C, u becomes too far away $\operatorname{dist}_T(r,u) > \frac{10\log n}{\beta}$

Grow a ball C_1 centered at u with radius $\leq \log n/\beta$

The cut is sparse

 $|E \cap (C \times C_1)| \le \beta \cdot \text{vol}(C_1)$

Let C_1 be a new cluster if it does not contain too many edges, namely:

$$\operatorname{vol}(C_1) \leq \frac{1}{2} \operatorname{vol}(C^{\mathsf{init}})$$

Otherwise

In cluster C, u becomes too far away $\operatorname{dist}_T(r,u) > \frac{10\log n}{\beta}$

Grow a ball C_1 centered at u with radius $\leq \log n/\beta$

Cut size is small

$$|E \cap (C \times C_1)| \le \beta \cdot \mathsf{vol}(C_1)$$

Let C_1 be a new cluster if it does not contain too many edges, namely:

$$\operatorname{vol}(C_1) \leq \frac{1}{2} \operatorname{vol}(C^{\mathsf{init}})$$

Otherwise, randomly reassign the root and rebuild a new BFS tree

In cluster C, u becomes too far away $\operatorname{dist}_T(r,u) > \frac{10\log n}{\beta}$

Grow a ball C_1 centered at u with radius $\leq \log n/\beta$

Cut size is small $|E \cap (C \times C_1)| \le \beta \cdot \text{vol}(C_1)$

Correctness & running time

- Lemma: (total # inter-cluster edges)

 Each time a new cluster C_1 is created,

 # new inter-cluster edges $\leq \beta \cdot \text{vol}(C_1) \leq \beta \cdot \frac{1}{2} \text{vol}(C^{\text{init}})$ Therefore, eventually #inter-cluster edges $\leq m\beta \log n$
- Lemma: (total running time) Each cluster reassigns its BFS tree root for $O(\log n)$ times, with high probability. Hence total time is $\tilde{O}(m/\beta)$

Thanks