Dynamic Low Stretch Spanning Trees
in Sub-polynomial Time

Shiri Chechik, Tianyi Zhang

Tel Aviv University, Tsinghua University

Sparsification

Approximate dense objects using sparse objects

masonry arch truss arch

This example is taken from www.cosy.sbg.ac.at/~sk/talks/Salzburg2017.pdf

Graph sparsification

Let G = (V, E) be an undirected (multi-)graph

Want to reduce number of edges while preserving certain
graph properties

Example:
(Spanners) Every graph has a subgraph with O(n
edges that 3-approximates pairwise distances

1.5)

What if we want to sparsify G as a ?

n vertices

Definition: low-stretch spanning trees

e Llet T bea of graph G

e Want low average stretch of 7

1
stretch of T' = Z disty(u, v)
| E|
(u,v)eE
n vertices n vertices
O—O— snnnns o—O0 O—O—— ssnnns o—0O
(o O 0
o o 3 o
O
Lo O C 0
. >
; c
o o o

average stretch = (2(n) average stretch = O(1)

o

n vertices

History of low-stretch trees

Reference Average stretch | Construction time
Alon+'95] Q(log n)
[Alon+'95] 20(/Togn - Toglog n) O(m)
[Elk+08] O(log” nlog log n) O(m)
ABN'09) O(logn - loglogn é(m)
' . (loglog log n)?)
IAN’12] O(logn - loglog n) O(m)

n = # vertices, m = # edges

The dynamic setting

Our world keeps changing

SINGLE POINT
Ny OF FAILURE

change of network topologies change of traffic conditions

Definition: dynamic low-stretch trees

e Graph G suffers a sequence of edge insertions / deletions

 Want to maintain a spanning tree
e Low average stretch, say ne)

e Fast update time, ideally logO(l)n

e Raised in [BKS’12]; first studied in [FG’19]

Our results

FG'19]
Average stretch: no)
Randomized update time: pliz+o(l)
[CZ720]

Average stretch: no)
Randomized update time: now

Extend to weighted graphs but only with edge deletions

In this talk, we only focus on graphs

An overview of [Alon+’95]

Low diameter decomposition

Definition: A f-decomposition is a partition of V into clusters
Cl’ C2, cee, Ck such that:
log n

)

(2) number of inter-cluster edges is < fm

(1) diameter of each G[C;] is < O(

———_§

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering

—__ _§
— —

— —
= o= = == = = T

a small graph

Low-stretch spanning tree

BFS tree BFS tree BFS tree

——————
= [.

— —
————————

a small graph

BFS tree

Average stretch

Diameter of node in G; is at most

(logn/p)’

Number of edges in G; is at most f'm

Stretch of any intra-cluster edge in

G\G,,, is (logn/p)™*!

Total stretch becomes m

14+0(1)

contracted graph G;,

Y

dist; (1, v) < (logn/p)*!

Y disty(u,v) <mlog*' n/p
(u,)EG\G,,

Y) disty(u,v) < mlog"t'n/p

0<i<h (u,v)EG\G,,,

< m1+0(1)

h=+/logn,p=m"""

An overview of [FG’19]

Decremental low-diameter decomposition

e Lemma: [FG’19]

A [-decomposition can be maintained under edge deletions
such that:

(1) total update time is O(m/)
(2) total number of changes to inter-cluster edges is O(m)

— — — — m— o
— — —
—

/ N < s
/ 4 \
/ / , \
| ;- y l
\ // T I
\ /4 /
\) \ /

_— e e o e — —

Decremental low-diameter decomposition

e Lemma: [FG’19]

A [-decomposition can be maintained under edge deletions
such that:

(1) total update time is O(m/)
(2) total number of changes to inter-cluster edges is O(m)

— — — — m— o
— — —
—

/7 \ , 7~ ~ ~
/ / /o N
. / . .
I’ edge ! - y : edge i
, . deletions / P . deletions : |
. . / "
. /[/
\\O oq_\o O o/
/

_— e e o e — —

Decremental low-diameter decomposition

e Lemma: [FG’19]

A [-decomposition can be maintained under edge deletions
such that:

(1) total update time is O(m/)
(2) total number of changes to inter-cluster edges is O(m)

update the -decomposition

Decremental low-diameter decomposition

e Lemma: [FG’19]

A [-decomposition can be maintained under edge deletions
such that:

(1) total update time is O(m/)
(2) total number of changes to inter-cluster edges is O(m)

total #inter-cluster edges =3

Fully dynamic low-diameter decomposition

e Lemma: [FG’19]

A [-decomposition can be maintained under edge updates
such that:

(1) amortized update time is O(1/?)
(2) amortized changes to inter-cluster edges is O(1//)

* Handle edge insertions lazily

Apply decremental f-decomposition, and ignore all edge
iInsertions, and edge updates

_ total changes m
, Amortized changes ~ =—=1/p

total updates pm

Total update time of hierarchical clustering

1 update
(ins / del)

Total update time of hierarchical clustering

GO Gl
s
4 propagation 4
>
1 update 1/ updates
(ins / del) (ins / del)

Total update time of hierarchical clustering

>

propagation

1 update 1/ updates

(ins / del)

>

propagation

>

(ins / del)

>

(1/p)" updates
(ins / del)

Total update time of hierarchical clustering

>

propagation

1 update 1/ updates

(ins / del)

>

propagation

(ins / del)

>

propagation

(1/p)" updates

(ins / del)

>

(1/)" updates

(ins / del)

Total update time of hierarchical clustering

G, G, G, G,
R AN o A A,
4 propagation 4 propagation 4 propagation 4
1 update 1/ updates (1/p)" updates (1/)" updates
(ins / del) (ins / del) (ins / del) (ins / del)

e Overall update time = (1/8)"*? + mp" = m"->*oD

e Graph sparsification can improve m">°W 1o 5 V->+o(D)

Our improvement

Reducing total changes to inter-cluster edges

e Lemma: [FG'19]

A [}-decomposition can be maintained under edge
deletions such that:

(1) total update time is O(m/)
(2) total number of changes to inter-cluster is O(m)

e | emma:

A [-decomposition can be maintained under edge
deletions such that:

(1) total update time is O(m/f3)
(2) total number of changes to inter-cluster is O(/ - m)

Fully dynamic low-diameter decomposition

e | emma:

A [-decomposition can be maintained under edge updates
such that:

(1) amortized update time is O(1/?)
(2) amortized changes to inter-cluster edges is O(1)

* Handle edge insertions lazily

Apply decremental f-decomposition, and ignore all edge
iInsertions, and edge updates

total changes fm

., Amortized changes ~ =1

total updates - pm B

Total update time of hierarchical clustering

G() Gl Gi Gh
> A O :enees O @ eeees O ruue- Jo\c A
4 propagation 4 propagation 4 propagation 4
> > >
log n log'n log"n
1 update 5 updates £ updates (" updates
(ins / del) (ins / del) (ins / del) (ins / del)

Overall update time = ,B_z loghn + mﬁh — po()

Decremental f-decomposition

Decremental f-decomposition

In cluster C,
u becomes too far away

101log n

disty(r, u) >

Decremental f-decomposition

In cluster C,

u becomes too far away
101log n

disty(r, u) >

Grow a ball C; centered at
u with radius < logn/p

logn |

| radius <

Decremental f-decomposition

In cluster C,

u becomes too far away
101log n

disty(r, u) >

Grow a ball C; centered at
u with radius < logn/p

The cut is sparse
|Eﬂ (CX Cl)l Sﬁ‘VOI(Cl)

logn |

| radius <

Decremental f-decomposition

Let C, be a new cluster if it does not
contain too many edges, namely:

1 .
vol(C)) < EvoI(Cm't)

Otherwise
\ In cluster C,
u becomes too far away
_ 10logn
dist; (7, u) >
\
Grow a ball C, centered at
u

u with radius < logn/p

| - | Cut size is small
| radius < ";” | |EN(CXC)| <p-vol(C))

Decremental f-decomposition

Let (|, be a new cluster if it does not
contain too many edges, namely:

1 .
vol(C)) < EvoI(Cm't)

Otherwise, randomly reassign the root
and rebuild a new BFS tree

In cluster C,

u becomes too far away
101log n

disty(r, u) >

Grow a ball C; centered at
u with radius < logn/p

Cut size is small

Correctness & running time

e Lemma: (total # inter-cluster edges)
Each time a new cluster C is created,

1 .
new inter-cluster edges < /- vol(Cy) <) - 5V0|(let)

Therefore, eventually #inter-cluster edges < mfilogn

e Lemma: (total running time)
Each cluster reassigns its BFS tree root for O(log n)

times, with high probability. Hence total time is O(m/f3)

Thanks

