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Definition: DFS tree
• Given an undirected graph G = (V, E) with a designated root


• DFS tree: a maximal tree containing the root, where every 
non-tree edge connects an ancestor and a descendant

A DFS tree Not a DFS tree

root root



Data structure


• Maintain a DFS tree T in graph G

Definition: Incremental DFS tree

Update operations


• Input: insert an edge/vertex to G


• Output: print all edges of T
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Progress on incremental DFS

• n = # of vertices, m = # of edges

Reference Naïve [BK’14] [BCC+’16] [NS’17] New

Update 
time

Space
                        


in bits

Worst-
case? Yes No Yes Yes Yes

O(m+ n)

O(m+ n) O(m+ n)

O(n) O(n log3 n)

O(m log n)

O(n log n)

O(m log n)

O(n)

O(m log n)



Main Theorem: 


• Preprocess graph G in                           time


• Input: a set U of k edge insertions


• Output: a DFS tree of G+U in 

Reduction to batch insertion

O(n+ k)

O(min{m log n, n2})
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Revert & reroot

Batch insertions [BCC+’16]
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Revert & reroot

Batch insertions [BCC+’16]
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Revert & reroot

Batch insertions [BCC+’16]
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Finding highest ancestors
Tool I: 2D-range query

Euler-tour order
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2D-range minimum  
takes                timeO(log n)

Total time ’d be        O(k + n log n)
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Finding highest ancestors
Tool II: Fractional cascading & tree partitioning
Lemma: [CG’86]

Given k sorted integer arrays of total size m


• Input: integer x 

• Output: successors of x in each array, in time O(k + logm)
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Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with 
So every subtree has size 

k = log n
O(log n)

Precompute for every choice of 
reverted tree path below the 
nearest special ancestor

entries in total O(n log n)
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Consider three cases below

The reverted tree path 
contains a special vertex, 
and subtree-size > log n

Apply 2D-range minimum 
O(log n) time

One can prove this happens 
at most O(n / log n) times, so 
total time becomes O(n)
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Highest ancestors in O(n) total time

A bunch of subtrees 
containing no special vertices

Apply fractional-cascade 
O(subtree-sizes + log n) time

Sum of subtree-sizes = O(n)

One can prove this happens 
at most O(n / log n) times, so 
total time becomes O(n)

Consider three cases below

Summary: total time is O(n)
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