An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Lijie Chen¹, Ran Duan², Ruosong Wang³, Hanrui Zhang ${ }^{4}$, Tianyi Zhang ${ }^{2}$

${ }^{1}$ MIT, ${ }^{2}$ Tsinghua University, ${ }^{3} \mathrm{CMU}$, ${ }^{4}$ Duke University

Definition: DFS tree

- Given an undirected graph $G=(V, E)$ with a designated root
- DFS tree: a maximal tree containing the root, where every non-tree edge connects an ancestor and a descendant

A DFS tree

Not a DFS tree

Definition: Incremental DFS tree

Data structure

- Maintain a DFS tree T in graph G

Update operations

- Input: insert an edge/vertex to G
- Output: print all edges of T

Example: Incremental DFS tree

Input:
Updates to G
Picture
Output:
Change in T

Example: Incremental DFS tree

Input: Updates to G		Insert(3,4)
Picture		
Output: Change in T		

Example: Incremental DFS tree

Progress on incremental DFS

- $n=\#$ of vertices, $m=\#$ of edges
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Reference } & \text { Naïve } & {\left[\mathrm{BK}^{\prime} 14\right]} & {\left[\mathrm{BCC}+{ }^{\prime} 16\right]} & \text { [NS'17] } & \text { New } \\ \hline \begin{array}{c}\text { Update } \\ \text { time }\end{array} & O(m+n) & O(n) & O\left(n \log ^{3} n\right) & O(n \log n) & O(n) \\ \hline \text { Space } & O(m+n) & O(m+n) & O(m \log n) & O(m \log n) & O(m \log n) \\ \text { in bits }\end{array}\right]$

Reduction to batch insertion

Main Theorem:

- Preprocess graph \mathcal{G} in $O\left(\min \left\{m \log n, n^{2}\right\}\right)$ time
- Input: a set U of k edge insertions
- Output: a DFS tree of $G+U$ in $O(n+k)$

Batch insertions [BCC+'16]

Revert \& reroot

How to relocate this subtree?

Batch insertions [BCC+'16]

Revert \& reroot

How to relocate this subtree?
Find the highest ancestor...

Batch insertions [BCC+'16]

Revert \& reroot

How to relocate this subtree?
Find the highest ancestor and reroot again.

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Recursively revert \& reroot

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Finding highest ancestors

Tool I: 2D-range query

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

2D-range minimum takes $O(\log n)$ time

Finding highest ancestors

Tool I: 2D-range query

Euler-tour order

2D-range minimum takes $O(\log n)$ time

Total time 'd be $O(k+n \log n)$

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning 'Lemma: [CG'86]
'Given k sorted integer arrays of total size m
-• Input: integer x
'- Output: successors of x in each array, in time $O(k+\log m)$ '

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning Lemma: [CG'86]
'Given k sorted integer arrays of total size m

- Input: integer x
'- Output: successors of x in each array, in time $O(k+\log m)$

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning Lemma: [CG'86]
'Given k sorted integer arrays of total size m

- Input: integer x
-- Output: successors of x in each array, in time $O(k+\log m)$

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning LEemma: [CḠ'86]
'Given k sorted integer arrays of total size m

- Input: integer x
'- Output: successors of x in each array, in time $O(k+\log m)$

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning 'Lemma: [DZ'17]
'Given a tree T of size n,
!• Input: integer k

- Output: remove $O(n / k)$ special vertices to partition T into subtrees of size at most k

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning 'Lemma: [DZ'17]
'Given a tree T of size n,
I• Input: integer k
'- Output: remove $O(n / k)$ special vertices to partition T into subtrees of size at most k

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning 'Lemma: [DZ'17]
'Given a tree T of size n,
I• Input: integer k
'- Output: remove $O(n / k)$ special vertices to partition T into subtrees of size at most k

Finding highest ancestors

Tool II: Fractional cascading \& tree partitioning 'Lemma: [DZ'17]
'Given a tree T of size n,
!• Input: integer k
'- Output: remove $O(n / k)$ special vertices to partition T into subtrees of size at most k

Finding highest ancestors

New data structure for finding highest ancestors

Finding highest ancestors

New data structure for finding highest ancestors
Apply tree partition with $k=\log n$ So every sulbtree has size $O(\log n)$

Finding highest ancestors

New data structure for finding highest ancestors
Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Build fractional cascading on a bunch of subtrees

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Build fractional cascading on a bunch of subtrees

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

Finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k=\log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

$O(n \log n)$ entries in total

Highest ancestors in $O(n)$ total time

Consider three cases below

Highest ancestors in $O(n)$ total time

Consider three cases below

The reverted tree path contains no special vertices

Highest ancestors in $O(n)$ total time

Consider three cases below

Use precomputed entries
O(1) time

The reverted tree path contains no special vertices

Highest ancestors in $O(n)$ total time

Consider three cases below

Use precomputed entries O(1) time

Total time $=O(n)$

The reverted tree path contains no special vertices

Highest ancestors in $O(n)$ total time

Consider three cases below

The reverted tree path contains a special vertex, and subtree-size > log n

Highest ancestors in $O(n)$ total time

Consider three cases below

Apply 2D-range minimum O(log n) time

The reverted tree path contains a special vertex, and subtree-size > log n

Highest ancestors in $O(n)$ total time

Consider three cases below

Apply 2D-range minimum O(log n) time

One can prove this happens at most $O(n / \log n)$ times, so total time becomes $O(n)$

Highest ancestors in $O(n)$ total time

 Consider three cases below

A bunch of subtrees containing no special vertices

Highest ancestors in $O(n)$ total time

Consider three cases below

A bunch of subtrees containing no special vertices

Apply fractional-cascade O(subtree-sizes + log n) time

Highest ancestors in $O(n)$ total time

Consider three cases below

Apply fractional-cascade O(subtree-sizes + log n) time

Sum of subtree-sizes $=\mathbf{O}(\boldsymbol{n})$

A bunch of subtrees containing no special vertices

Highest ancestors in $O(n)$ total time

Consider three cases below

Apply fractional-cascade O(subtree-sizes + log n) time

Sum of subtree-sizes $=\mathbf{O}(\boldsymbol{n})$
One can prove this happens at most $O(n / \log n)$ times, so total time becomes $O(n)$

Highest ancestors in $O(n)$ total time

Consider three cases below

A bunch of subtrees containing no special vertices

Apply fractional-cascade O(subtree-sizes + log n) time

Sum of subtree-sizes $=\boldsymbol{O}(\boldsymbol{n})$
One can prove this happens at most $O(n / \log n)$ times, so total time becomes $O(n)$

Summary: total time is $O(n)$

Thanks

