
An Improved Algorithm for Incremental DFS
Tree in Undirected Graphs

Lijie Chen1, Ran Duan2, Ruosong Wang3,
Hanrui Zhang4, Tianyi Zhang2

1MIT, 2Tsinghua University, 3CMU, 4Duke University

Definition: DFS tree
• Given an undirected graph G = (V, E) with a designated root

• DFS tree: a maximal tree containing the root, where every
non-tree edge connects an ancestor and a descendant

A DFS tree Not a DFS tree

root root

Data structure

• Maintain a DFS tree T in graph G

Definition: Incremental DFS tree

Update operations

• Input: insert an edge/vertex to G

• Output: print all edges of T

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

1

2

3 4

5

Insert(3,4)

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

Insert(3,4)

1

2

3 4

5

Delete(2,4)

Insert(3,4)

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

Insert(3,4)

1

2

3 4

5

Delete(2,4)

Insert(3,4)

Insert(2,5)

1

2

3 4

5

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

Insert(3,4)

1

2

3 4

5

Delete(2,4)

Insert(3,4)

Insert(2,5)

Delete(1,5)

Insert(2,5)

1

2

3 4

5

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

Insert(3,4)

1

2

3 4

5

Delete(2,4)

Insert(3,4)

Insert(2,5)

Delete(1,5)

Insert(2,5)

1

2

3 4

5

Insert(4,5)

1

2

3 4

5

Input:
Updates to G

Picture

Output:
Change in T

Example: Incremental DFS tree

1

2

3 4

5

Insert(3,4)

1

2

3 4

5

Delete(2,4)

Insert(3,4)

Insert(2,5)

Delete(1,5)

Insert(2,5)

1

2

3 4

5

Insert(4,5)

Delete(2,5)

Insert(4,5)

1

2

3 4

5

Progress on incremental DFS

• n = # of vertices, m = # of edges

Reference Naïve [BK’14] [BCC+’16] [NS’17] New

Update
time

Space

in bits

Worst-
case? Yes No Yes Yes Yes

O(m+ n)

O(m+ n) O(m+ n)

O(n) O(n log3 n)

O(m log n)

O(n log n)

O(m log n)

O(n)

O(m log n)

Main Theorem:

• Preprocess graph G in time

• Input: a set U of k edge insertions

• Output: a DFS tree of G+U in

Reduction to batch insertion

O(n+ k)

O(min{m log n, n2})

Revert & reroot

Batch insertions [BCC+’16]

2

3

4

5

6

7

8

0

10

1

Revert & reroot

Batch insertions [BCC+’16]

new insertion

2

3

4

5

6

7

8

0

10

1

Revert & reroot

Batch insertions [BCC+’16]

new insertion

2

3

4

5

6

7

8

re
ve

rt
th

is
tre

e p
at

h
0

10

1

Revert & reroot

Batch insertions [BCC+’16]

new insertion

2

3

4

5

6

7

8

re
ve

rt
th

is
tre

e p
at

h

2

3

4

5

6

7

8

0

10

0

10

reroot

1

1

Revert & reroot

Batch insertions [BCC+’16]

2

3

4

5

6

7

8 2

3

4

5

6

7

8

0

10

0

10

9

9

How to relocate this subtree?

1

1

Revert & reroot

Batch insertions [BCC+’16]

2

3

4

5

6

7

8 2

3

4

5

6

7

8

0

10

0

10

9

9

How to relocate this subtree?
Find the highest ancestor…

1

1

Revert & reroot

Batch insertions [BCC+’16]

2

3

4

5

6

7

8 2

3

4

5

6

7

8

0

10

0

10

9

9

How to relocate this subtree?

1

1

Find the highest ancestor and reroot again.

reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Recursively revert & reroot

Batch insertions [BCC+’16]
Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+’16]
Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+’16]
Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+’16]
Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+’16]
Bottleneck: finding highest ancestors on reverted paths

Batch insertions [BCC+’16]
Bottleneck: finding highest ancestors on reverted paths

Finding highest ancestors
Tool I: 2D-range query

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

2D-range minimum
takes timeO(log n)

Finding highest ancestors
Tool I: 2D-range query

Euler-tour order

D
FS

 o
rd

er

2D-range minimum
takes timeO(log n)

Total time ’d be O(k + n log n)

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning
Lemma: [CG’86]

Given k sorted integer arrays of total size m

• Input: integer x

• Output: successors of x in each array, in time O(k + logm)

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning
Lemma: [CG’86]

Given k sorted integer arrays of total size m

• Input: integer x

• Output: successors of x in each array, in time O(k + logm)

…
…k sorted

arrays

4 6 9 13

157 8 12

5 14 18 19

11

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning
Lemma: [CG’86]

Given k sorted integer arrays of total size m

• Input: integer x

• Output: successors of x in each array, in time O(k + logm)

…
…k sorted

arraysx = 10

4 6 9 13

157 8 12

5 14 18 19

11

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning
Lemma: [CG’86]

Given k sorted integer arrays of total size m

• Input: integer x

• Output: successors of x in each array, in time O(k + logm)

…
…k sorted

arraysx = 10

4 6 9 13

157 8 12

5 14 18 19

1111

12

14

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning

Lemma: [DZ’17]

Given a tree T of size n,

• Input: integer k

• Output: remove special vertices to partition T into
subtrees of size at most k

O(n/k)

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning

Lemma: [DZ’17]

Given a tree T of size n,

• Input: integer k

• Output: remove special vertices to partition T into
subtrees of size at most k

O(n/k)

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning

Lemma: [DZ’17]

Given a tree T of size n,

• Input: integer k

• Output: remove special vertices to partition T into
subtrees of size at most k

O(n/k)

Finding highest ancestors
Tool II: Fractional cascading & tree partitioning

Lemma: [DZ’17]

Given a tree T of size n,

• Input: integer k

• Output: remove special vertices to partition T into
subtrees of size at most k

O(n/k)

Finding highest ancestors
New data structure for finding highest ancestors

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Build fractional cascading on a
bunch of subtrees

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Build fractional cascading on a
bunch of subtrees

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

Finding highest ancestors
New data structure for finding highest ancestors
Apply tree partition with
So every subtree has size

k = log n
O(log n)

Precompute for every choice of
reverted tree path below the
nearest special ancestor

entries in total O(n log n)

Highest ancestors in O(n) total time
Consider three cases below

Highest ancestors in O(n) total time
Consider three cases below

The reverted tree path
contains no special vertices

Highest ancestors in O(n) total time
Consider three cases below

The reverted tree path
contains no special vertices

Use precomputed entries
O(1) time

Highest ancestors in O(n) total time
Consider three cases below

The reverted tree path
contains no special vertices

Use precomputed entries
O(1) time

Total time = O(n)

Highest ancestors in O(n) total time
Consider three cases below

The reverted tree path
contains a special vertex,
and subtree-size > log n

Highest ancestors in O(n) total time
Consider three cases below

The reverted tree path
contains a special vertex,
and subtree-size > log n

Apply 2D-range minimum
O(log n) time

Highest ancestors in O(n) total time
Consider three cases below

The reverted tree path
contains a special vertex,
and subtree-size > log n

Apply 2D-range minimum
O(log n) time

One can prove this happens
at most O(n / log n) times, so
total time becomes O(n)

Highest ancestors in O(n) total time

A bunch of subtrees
containing no special vertices

Consider three cases below

Highest ancestors in O(n) total time

A bunch of subtrees
containing no special vertices

Apply fractional-cascade
O(subtree-sizes + log n) time

Consider three cases below

Highest ancestors in O(n) total time

A bunch of subtrees
containing no special vertices

Apply fractional-cascade
O(subtree-sizes + log n) time

Sum of subtree-sizes = O(n)

Consider three cases below

Highest ancestors in O(n) total time

A bunch of subtrees
containing no special vertices

Apply fractional-cascade
O(subtree-sizes + log n) time

Sum of subtree-sizes = O(n)

One can prove this happens
at most O(n / log n) times, so
total time becomes O(n)

Consider three cases below

Highest ancestors in O(n) total time

A bunch of subtrees
containing no special vertices

Apply fractional-cascade
O(subtree-sizes + log n) time

Sum of subtree-sizes = O(n)

One can prove this happens
at most O(n / log n) times, so
total time becomes O(n)

Consider three cases below

Summary: total time is O(n)

Thanks

