An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

Lijie Chen¹, Ran Duan², Ruosong Wang³, Hanrui Zhang⁴, **Tianyi Zhang²**

¹MIT, ²Tsinghua University, ³CMU, ⁴Duke University

Definition: DFS tree

- Given an undirected graph G = (V, E) with a designated root
- DFS tree: a maximal tree containing the root, where every non-tree edge connects an ancestor and a descendant

Not a DFS tree

Definition: Incremental DFS tree

Data structure

• Maintain a DFS tree T in graph G

Update operations

- Input: insert an edge/vertex to G
- Output: print all edges of T

Progress on incremental DFS

• n = # of vertices, m = # of edges

Reference	Naïve	[BK'14]	[BCC+'16]	[NS'17]	New
Update time	O(m+n)	O(n)	$O(n \log^3 n)$	$O(n\log n)$	O(n)
Space	O(m+n)	O(m+n)	$O(m \log n)$	$O(m \log n)$ in bits	$O(m \log n)$
Worst- case?	Yes	No	Yes	Yes	Yes

Reduction to batch insertion

Main Theorem:

- Preprocess graph G in $O(\min\{m \log n, n^2\})$ time
- Input: a set *U* of *k* edge insertions
- **Output:** a DFS tree of G+U in O(n+k)

Revert & reroot

How to relocate this subtree?

Revert & reroot

How to relocate this subtree? Find the highest ancestor...

Batch insertions [BCC+'16]

Bottleneck: finding highest ancestors on reverted paths

Tool I: 2D-range query

2D-range minimum takes $O(\log n)$ time

Tool I: 2D-range query

2D-range minimum takes $O(\log n)$ time

Total time 'd be $O(k + n \log n)$

Tool II: Fractional cascading & tree partitioning

Tool II: Fractional cascading & tree partitioning

- **Input:** integer *x*
- Output: successors of x in each array, in time $O(k + \log m)$

Tool II: Fractional cascading & tree partitioning

- **Input:** integer *x*
- **Output:** successors of x in each array, in time $O(k + \log m)$

Tool II: Fractional cascading & tree partitioning

- Input: integer x
- **Output:** successors of x in each array, in time $O(k + \log m)$

Tool II: Fractional cascading & tree partitioning

- Input: integer x
- **Output:** successors of x in each array, in time $O(k + \log m)$

Tool II: Fractional cascading & tree partitioning

Lemma: [DZ'17]

- Input: integer k
- Output: remove O(n/k) special vertices to partition T into subtrees of size at most k

Tool II: Fractional cascading & tree partitioning

Lemma: [DZ'17]

- Input: integer k
- Output: remove O(n/k) special vertices to partition T into subtrees of size at most k

Tool II: Fractional cascading & tree partitioning

Lemma: [DZ'17]

- Input: integer k
- Output: remove O(n/k) special vertices to partition T into subtrees of size at most k

Tool II: Fractional cascading & tree partitioning

Lemma: [DZ'17]

- Input: integer k
- **Output:** remove O(n/k) special vertices to partition *T* into subtrees of size at most *k*

New data structure for finding highest ancestors

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

Build fractional cascading on a bunch of subtrees

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$ Build fractional cascading on a bunch of subtrees

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

New data structure for finding highest ancestors

Apply tree partition with $k = \log n$ So every subtree has size $O(\log n)$

Precompute for every choice of reverted tree path below the nearest special ancestor

 $O(n \log n)$ entries in total

Highest ancestors in O(n) total time

Consider three cases below
Consider three cases below

The reverted tree path contains no special vertices

Consider three cases below

Use precomputed entries *O(1)* time

The reverted tree path contains no special vertices

Consider three cases below

Use precomputed entries O(1) time

Total time = O(n)

The reverted tree path contains no special vertices

Consider three cases below

The reverted tree path contains a special vertex, and subtree-size > *log n*

Consider three cases below

Apply 2D-range minimum O(log n) time

The reverted tree path contains a special vertex, and subtree-size > *log n*

Consider three cases below

The reverted tree path contains a special vertex, and subtree-size > *log n* Apply 2D-range minimum O(log n) time

One can prove this happens at most *O(n / log n)* times, so total time becomes *O(n)*

Consider three cases below

A bunch of subtrees containing no special vertices

Consider three cases below

Apply fractional-cascade O(subtree-sizes + log n) time

A bunch of subtrees containing no special vertices

Consider three cases below

Apply fractional-cascade O(subtree-sizes + *log n*) time

Sum of subtree-sizes = O(n)

A bunch of subtrees containing no special vertices

Consider three cases below

A bunch of subtrees containing no special vertices Apply fractional-cascade O(subtree-sizes + log n) time

Sum of subtree-sizes = O(n)

One can prove this happens at most *O(n / log n)* times, so total time becomes *O(n)*

Consider three cases below

Apply fractional-cascade O(subtree-sizes + log n) time

Sum of subtree-sizes = O(n)

One can prove this happens at most *O(n / log n)* times, so total time becomes *O(n)*

A bunch of subtrees containing no special vertices

Summary: total time is O(n)

Thanks