Faster Gomory-Hu Trees
Ig Graphs

Tianyl Zhang

000

TELAVIV NU'0O11IIN
UNIVERSITY 1IN TN



Problem Definition




All-Pairs Minimum Cuts

 Input: an undirected simple graph G = (V, E), n vertices and m edges

* OQutput: for every pair s, € V, the in G
C
A
C ® C
S t
C



Gomory-Hu Tree

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F'), such
that any s-t min-cut in T is also an s-t min-cut in G

G=(V,E)



Gomory-Hu Tree

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F'), such
that any s-t min-cut in T is also an s-t min-cut in G

G=(V,E)



Gomory-Hu Tree

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F'), such
that any s-t min-cut in T is also an s-t min-cut in G

G=(V,E)



Gomory-Hu Tree

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F'), such
that any s-t min-cut in T is also an s-t min-cut in G

All-Pairs Min-Cuts:
Given a Gomory-Hu tree T'= (V, F) of G = (V, E), can query any s-t
minimum cut in O(1) time, so total time = runtime of GH + O(n?)




reference

total size of

Gomory & Hu
1961

...............................................................................................................

Hariharan, Kavitha, Panigrahi, Bhalgat
2007 |

...............................................................................................................

Abboud, Krauthgamer, Trabelsi |
2021 5

...............................................................................................................

Abboud, Krauthgamer, Trabelsi
2021 5

...............................................................................................................

Li, Panigrahi, Saranurak
2021

...............................................................................................................

Abboud, Krauthgamer, Trabelsi
2022 5

Abboud et al, 2022

max-flow instances . . graph type
mn mn —+ n>> edge-weighted
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' mn smpe
""""""""""""""""""""" T
""""""""""""""""" B O S U
""""""""""""""""" p2o) ) gree
a0 R smole
''''''''''''''''''''''''''''' 2 A ympe
'''''''''''''''''''''''''''' mo w2 edgeweighted

For real runtime, assume ViaxkFlow(m, n) = m —+ n' IBLL+, 2021]



Classic Gomory-Hu Tree Algorithm
[GH, 1961]




Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side



Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side



Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side




Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side



Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side




Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side




Classic Gomory-Hu Tree

Algorithm [GH’61]

1. Pick arbitrary s, t € V and compute s-t min-cut (C, V\C)

2. Contract one side and recur on the other side




Classic Gomory-Hu Tree

Possible recursions of [GH’61]




Classic Gomory-Hu Tree

Possible recursion trees of [GH’61]

OO O O O O L]

balanced, runtime = MF(mlogn) unbalanced, runtime = MF(mn)



Subcubic Gomory-Hu Tree
[AKT, 2021]



Subcubic Gomory-Hu [AKT 21]

graph ecursion tree



Subcubic Gomory-Hu [AKT21]

graph recursion tree
O o
O

O

O O
O

O
O O

, each side contains



Subcubic Gomory-Hu [AKT21]

graph recursion tree
_
O
O O _ _
O _ I B —
O O
O
O
O O O O 0O 0O 0O 0O

, each side contains , runtime = MF(mlogn)



Subcubic Gomory-Hu [AKT21]

graph recursion tree
O 0 °
O
O o 3
o pivot
o O
O O

In reality, compute single-source min-cuts



Subcubic Gomory-Hu [AKT21]

graph recursion tree
| °© o
O n ] manybranches [ ] L%
O
: s *
o O
O O O O O O 0O O

In reality, compute single-source min-cuts , runtime = MF(mlogn)



Single Source Min-Cuts [AKT 21}

O o
O Desired properties:
o O 1. Each part contains < 0.5n vertices
O O .
bivot 2. Atleast 0.1n vertices are cut off
O
o O Consequence:
O O » The recursion tree has O(log n) depth

In reality, compute single-source min-cuts



Using Expander Decomposition |AKT 21}

O
O O Expander decomposition [SW’19]:
O Partiton V =C, U(C, U --- U (st
® O 1. 9(C,) = O(¢pvol(C)), Vi
pivot
O 2. Each subgraph G{C:} is a
O @-expander




Using Expander Decomposition |AKT 21}

Expander decomposition [SW’19]:
Partition V= C, U (C, U --- U C s.t.

p:ot 1. 0(C,)) = O(¢vol(C)), Vi
2. Each subgraph G{C:} is a
O @-expander



Using Expander Decomposition |AKT 21}

dense interior

Expander decomposition [SW’19]:

Partition V= C, U (C, U --- U C s.t.

2. Each subgraph G{C.} is a
@-expander

dense interior




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 1: small expanders:

» Expander contains less than 0.1n
vertices

» An average vertex has at least 0.1n
out-going edges

» Total #average vertices = O(¢n)




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 1: small expanders:

» Expander contains less than 0.1n
vertices

» An average vertex has at least 0.1n
out-going edges

» Total #average vertices = O(¢n)

Solution:

« Compute min-cut for each average vertex
one-by-one




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 1: small expanders:

» Expander contains less than 0.1n
O 0O >0 1n vertices

» An average vertex has at least 0.1n

: “ out-going edges
pivot

3  Total #average vertices = O(¢n)

v‘\ Solution:
0‘4

« Compute min-cut for each average vertex
one-by-one




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 1: small expanders:

» Expander contains less than 0.1n
vertices

» An average vertex has at least 0.1n
out-going edges

» Total #average vertices = O(¢n)

Solution:

« Compute min-cut for each average vertex
one-by-one




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 1: small expanders:

» Expander contains less than 0.1n
O 0O >0 1n vertices

O A » An average vertex has at least 0.1n
pivot “ out-going edges

3  Total #average vertices = O(¢n)

Solution:

« Compute min-cut for each average vertex
one-by-one

> 0.1n



Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 2: large expanders & small cuts:

» Expander contains > 0.1n vertices

 Cuts in expander have size at most

O(1/¢)




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 2: large expanders & small cuts:

» Expander contains > 0.1n vertices

 Cuts in expander have size at most

O(1/¢)

Solution:

 Compute isolating cuts [AKT 21,
LP’20] in each large expander




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

< O(1/¢)
O
O

O

® <

pivot isolating cuts O \~
O

< O(1/¢) O O
< O(1/¢) < O(1/¢)

O

(1/7¢)

Type 2: large expanders & small cuts:

» Expander contains > 0.1n vertices

 Cuts in expander have size at most

O(1/¢)

Solution:

 Compute isolating cuts [AKT 21,
LP’20] in each large expander




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 3: large expanders & large cuts:

» Expander contains > 0.1n vertices

e Cuts “minus” expander have size at

most O(1/¢)




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 3: large expanders & large cuts:

» Expander contains > 0.1n vertices

©C o0
O  Cuts “gﬂnus” expander have size at
o O most O(1/)
pivot O
O O
< 0(1/¢) O



Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

Type 3: large expanders & large cuts:

» Expander contains > 0.1n vertices

©C o
O  Cuts “gﬂnus” expander have size at
© O most O(1/¢)
pivot O
O O Solution:
< O(1/¢) O O  Need to bound the depth of the
laminar family of all such cuts




Runtime Bottlenecks [AKT 21}

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

depth of
the laminar
of cuts

Type 3: large expanders & large cuts:

» Expander contains > 0.1n vertices

* Cuts “minus” expander have size at

most O(1/¢)

Solution:

* Need to bound the depth of the
laminar family of all such cuts




The First Bottleneck

Simplifying assumption: most vertex degrees are at least 0.2n

Running time:

e Assume

» Type 1 min-cuts cost ¢@n instances of max-flow
runtime = ¢n°

 Type 2 min-cuts cost 1/¢ instances of isolating cuts
runtime = n*/¢

. Overall runtime = ¢n’> + n?/¢ > n*>



The Second Bottleneck

Simplifying assumption: most vertex degrees are at least 0.2n

O
Running time: Sivot
* Type 3 min-cuts costs
iInstances of max-flow O

 Before that, need instances of
max-flow to make the laminar depth

bounded by d

» Overall runtime = (d + n/d) - n* > n*> O O



Attack on the Runtime Bottlenecks



The First Bottleneck

Runtime bottleneck:

Solution:

« Type 1 min-cuts cost ¢n instances of
max-flow

runtime = ¢n>

e |nstead of doing type 1 2,
just do type 1 or 2

e If type 2 involves more vertices,
 Type 2 min-cuts cost 1/¢ instances of then only do type 2

isolating cuts

runtime = n*/¢ e If type 1 involves more vertices,

then the graph is sparse
» Overall runtime = ¢n> + n?/¢p > n*> So max-flow should be cheaper



The First Bottleneck

Solution:

e |nstead of doing type 1 2,
just do type 1 or 2

e If type 2 involves more vertices,
then only do type 2

e |f type 1 involves more vertices,
then the graph Is sparse
So max-flow should be cheaper



The First Bottleneck

Solution:

e |nstead of doing type 1 2,
just do type 1 or 2

e |f type 2 involves more vertices,
then only do type 2

e |f type 1 involves more vertices,
then the graph Is sparse
So max-flow should be cheaper

O \
O
pivot O 'O
o/

Isolating cuts iIsolating cuts

Recursion tree:

* More than half of the vertices are cut-off, so
the recursion tree depth is still logarithmic




The First Bottleneck

Solution:

e |nstead of doing type 1 2,
just do type 1 or 2

e If type 2 involves more vertices,
then only do type 2

e |f type 1 involves more vertices,
then the graph is sparse
So max-flow should be cheaper

“ pivot

=

small expander

small expander

small expander

Total #edges:

 Most incident edges of yellow vertices cross the border

e Since
decomposition, total degree is < q§n2

IN an expander




The First Bottleneck

Solution:

e |nstead of doing type 1 2,
just do type 1 or 2

e If type 2 involves more vertices,
then only do type 2

e |f type 1 involves more vertices,
then the graph Is sparse
So max-flow should be cheaper

Sanity check:

 New runtime = n2/¢+§b2n3 = p o<




The First Bottleneck

Solution:

Sanity check:
. !nstead of doing type 1 2, . New runtime = n2/¢+n3 = n83<25
just do type 1 or 2
e If type 2 involves more vertices, General cases:
then only do type 2
* How to that
* |f type 1 involves more vertices, most vertex degrees are > 0.2n
then the graph is sparse
So max-flow should be cheaper . How to instead of n%>




The First Bottleneck

General cases: . O O O
O O
1. Define U, = {v | deg(v) € [2/,2¢+1)) O

2. Pick i such that 2| U, | is maximized

O O
3. Define subset of expanders
€ ={C||C| e [22)) O
- . - O
4. Pick jsuch that | '6; N U;| is maximized
5. Compute isolating cuts for each C N U, 2° 25+

where C € ng ‘ ‘ ‘

expander size



The First Bottleneck

General cases: . O O O
O
© O

O O
g )
O O
3. Define subset of expanders
€ ={C||C| e [22)) O
- . - O
4. Pick jsuch that | '6; N U;| is maximized
5. Compute isolating cuts for each C N U, 2° 25+

where C € ng ‘ _|—|_>

expander size



The First Bottleneck

General cases:

1. Define U, = {v | deg(v) € [2i,2i+1)}

2. Pick i such that 2| U, | is maximized

3. Define subset of expanders
€,={C||C| € [2,2*)
2S

4. Pick jsuch that | '6; N U;| is maximized

2s+2

5. Compute isolating cuts for each C N U,
where C € 6

expander size



The First Bottleneck

General cases: O O\
1. Define U, = {v | deg(v) € [2/,2¢+1)) O

2. Pick i such that 2| U, | is maximized

3. Define subset of expanders O
€;={C|IC| €[2.2"} o '©
L . . O
4. Pick jsuch that | '6; N U;| is maximized \_/
X 25+1 2s+2

S

expander size



The First Bottleneck

General cases:

1. Define U, = {v | deg(v) € [2/,2¢+1))
2. Pick i such that 2| U, | is maximized

3. Define subset of expanders
%, ={C||C|e[22)

4. Pick jsuch that | '6; N U;| is maximized

oo\
O --1

N 1/

Running time:

e |nstead of

« Can prove 1/ 10g2 n fraction of volume
has been cut-off

- So the recursion tree has depth log” n
R 23+1 2s+2

4

expander size




The Second Bottleneck

Previous runtime: 0O

| pivot
 [ype 3 min-cuts costs

d = depth instances of max-flow

depth of O
the laminar

e Runtime =

of cuts



The Second Bottleneck

Previous runtime:

 [ype 3 min-cuts costs
d = depth instances of max-flow

e Runtime =

New runtime:

 Take advantage of expanders

pivot



The Second Bottleneck

Previous runtime:

laminar structure of min cuts

 [ype 3 min-cuts costs
d = depth instances of max-flow

e Runtime =

a single branch

==

New runtime:
a star

 Take advantage of expanders

. Runtime = n°/¢




Further Directions

1. Sub-quadratic Gomory-Hu trees in weighted graphs?

2. Deterministic sub-cubic Gomory-Hu trees in weighted graphs”?



