Faster Gomory-Hu Trees in Simple Graphs

Tianyi Zhang

Problem Definition

All-Pairs Minimum Cuts

- **Output:** for every pair $s, t \in V$, the s-t min-cut value in G

• Input: an undirected simple graph G = (V, E), n vertices and m edges

Theorem [GH61]:

that any s-t min-cut in T is also an s-t min-cut in G

Given any G = (V, E), there exists an edge-weighted tree T = (V, F), such

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F), such that any s-t min-cut in T is also an s-t min-cut in G

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F), such that any s-t min-cut in T is also an s-t min-cut in G

Theorem [GH61]:

Given any G = (V, E), there exists an edge-weighted tree T = (V, F), such that any s-t min-cut in T is also an s-t min-cut in G

All-Pairs Min-Cuts:

Given a Gomory-Hu tree T = (V, F) of G = (V, E), can query any s-t minimum cut in $\tilde{O}(1)$ time, so total time = runtime of GH + $\tilde{O}(n^2)$

History

reference	total size of max-flow instances	runtime	graph type
Gomory & Hu 1961	т	$mn + n^{2.5}$	edge-weighted
Hariharan, Kavitha, Panigrahi, Bhalgat 2007		т	simple
Abboud, Krauthgamer, Trabelsi 2021	n ^{2.5}	n ^{2.5}	simple
Abboud, Krauthgamer, Trabelsi 2021	n ^{2+o(1)}	$n^{2+o(1)}$	simple
Li, Panigrahi, Saranurak 2021	n ^{2+o(1)}	$n^{2+o(1)}$	simple
Abboud, Krauthgamer, Trabelsi 2022	$(m + n^{1.75})^{1+o(1)}$	$(m+n^{1.9})^{1+o(1)}$	simple
Ours	<i>n</i> ²	n ^{17/8}	simple
Abboud et al, 2022	т	n ²	edge-weighted

For real runtime, assume MaxFlow(m, n) = $m + n^{1.5}$ [BLL+, 2021]

Classic Gomory-Hu Tree Algorithm [GH, 1961]

Algorithm [GH'61]

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

 \mathbf{O}

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

- 1. Pick arbitrary $s, t \in V$ and compute s-t min-cut $(C, V \setminus C)$
- 2. Contract one side and recur on the other side

Classic Gomory-Hu Tree **Possible recursions of [GH'61]**

Classic Gomory-Hu Tree **Possible recursion trees of [GH'61]**

balanced, runtime = $MF(m \log n)$

unbalanced, runtime = MF(mn)

Subcubic Gomory-Hu Tree [AKT, 2021]

Subcubic Gomory-Hu [AKT'21]

recursion tree

Ideally, each side contains half of the vertices

Subcubic Gomory-Hu [AKT'21]

recursion tree

Ideally, each side contains half of the vertices

Subcubic Gomory-Hu [AKT'21]

recursion tree

balanced, runtime = $MF(m \log n)$

Subcubic Gomory-Hu [AKT'21] recursion tree graph \bigcirc pivot \bigcap

In reality, compute single-source min-cuts

Subcubic Gomory-Hu [AKT'21] recursion tree graph (). many branches pivot

In reality, compute single-source min-cuts

balanced, runtime = $MF(m \log n)$

In reality, compute single-source min-cuts

Single Source Min-Cuts [AKT'21]

Desired properties:

- 1. Each part contains $\leq 0.5n$ vertices
- 2. At least 0.1n vertices are cut off

Consequence:

The recursion tree has O(log n) depth

Using Expander Decomposition [AKT'21]

Expander decomposition [SW'19]:

Partition
$$V = C_1 \cup C_2 \cup \cdots \cup C_k$$
 s.t.

1.
$$\partial(C_i) = \tilde{O}(\phi \operatorname{vol}(C_i)), \forall i$$

2. Each subgraph $G\{C_i\}$ is a ϕ -expander

Using Expander Decomposition [AKT'21]

Expander decomposition [SW'19]:

Partition
$$V = C_1 \cup C_2 \cup \cdots \cup C_k$$
 s.t.

1.
$$\partial(C_i) = \tilde{O}(\phi \operatorname{vol}(C_i)), \forall i$$

2. Each subgraph $G\{C_i\}$ is a ϕ -expander

Using Expander Decomposition [AKT'21]

Expander decomposition [SW'19]:

Partition $V = C_1 \cup C_2 \cup \cdots \cup C_k$ s.t.

1. $\partial(C_i) = \tilde{O}(\phi \operatorname{vol}(C_i)), \forall i$

2. Each subgraph $G\{C_i\}$ is a ϕ -expander

Type 1: small expanders:

- Expander contains less than 0.1nvertices
- An average vertex has at least 0.1nulletout-going edges
- Total #average vertices $= O(\phi n)$ \bullet

Type 1: small expanders:

- Expander contains less than 0.1nvertices
- An average vertex has at least 0.1nulletout-going edges
- Total #average vertices $= O(\phi n)$

Solution:

Compute min-cut for each average vertex one-by-one

Simplifying assumption: most vertex degrees are at least 0.2n

Type 1: small expanders:

- Expander contains less than 0.1*n* vertices
- An average vertex has at least 0.1n out-going edges
- Total #average vertices $= O(\phi n)$

Solution:

 Compute min-cut for each average vertex one-by-one

Type 1: small expanders:

- Expander contains less than 0.1nvertices
- An average vertex has at least 0.1nulletout-going edges
- Total #average vertices $= O(\phi n)$ \bullet

Solution:

Compute min-cut for each average vertex one-by-one

Type 1: small expanders:

- Expander contains less than 0.1nvertices
- An average vertex has at least 0.1nulletout-going edges
- Total #average vertices $= O(\phi n)$ \bullet

Solution:

Compute min-cut for each average vertex one-by-one

Type 2: large expanders & small cuts:

- Expander contains $\geq 0.1n$ vertices
- Cuts in expander have size at most $O(1/\phi)$

Type 2: large expanders & small cuts:

- Expander contains $\geq 0.1n$ vertices
- Cuts in expander have size at most $\tilde{O}(1/\phi)$

Solution:

Compute isolating cuts [AKT'21, LP'20] in each large expander

Runtime Bottlenecks [AKT'21] Simplifying assumption: most vertex degrees are at least 0.2n Type 2: large expanders & small cuts: $\leq \tilde{O}(1/\phi)$ Expander contains $\geq 0.1n$ vertices Cuts in expander have size at most $O(1/\phi)$ $\leq \tilde{O}(1/\phi)$ pivot isolating cuts **Solution:** Compute isolating cuts [AKT'21, LP'20] in each large expander $\leq \tilde{O}(1/\phi)$ $\leq \tilde{O}(1/\phi)$

Type 3: large expanders & large cuts:

- Expander contains $\geq 0.1n$ vertices
- Cuts "minus" expander have size at • most $\tilde{O}(1/\phi)$

Simplifying assumption: most vertex degrees are at least 0.2n

Type 3: large expanders & large cuts:

- Expander contains $\geq 0.1n$ vertices
- Cuts "minus" expander have size at most $\tilde{O}(1/\phi)$

Simplifying assumption: most vertex degrees are at least 0.2n

Type 3: large expanders & large cuts:

- Expander contains $\geq 0.1n$ vertices
- Cuts "minus" expander have size at most $\tilde{O}(1/\phi)$

Solution:

Need to bound the depth of the laminar family of all such cuts

Runtime Bottlenecks [AKT'21] Simplifying assumption: most vertex degrees are at least 0.2n

Type 3: large expanders & large cuts:

- Expander contains $\geq 0.1n$ vertices
- Cuts "minus" expander have size at most $\tilde{O}(1/\phi)$

depth of the laminar of cuts

Solution:

Need to bound the depth of the laminar family of all such cuts

Running time:

- Assume MaxFlow(m, n) = m+n
- Type 1 min-cuts cost ϕn instances of max-flow runtime = ϕn^3
- Type 2 min-cuts cost $1/\phi$ instances of isolating cuts runtime = n^2/ϕ
- Overall runtime = $\phi n^3 + n^2/\phi \ge$

The First Bottleneck

Simplifying assumption: most vertex degrees are at least 0.2n

$$\ge n^{2.5}$$

The Second Bottleneck

Simplifying assumption: most vertex degrees are at least 0.2n

Running time:

- Type 3 min-cuts costs
 d = depth instances of max-flow
- Before that, need n/d instances of max-flow to make the laminar depth bounded by d
- Overall runtime = $(d + n/d) \cdot n^2 \ge n^{2.5}$

Attack on the Runtime Bottlenecks

Runtime bottleneck:

- Type 1 min-cuts cost ϕn instances of max-flow runtime = ϕn^3
- Type 2 min-cuts cost $1/\phi$ instances of isolating cuts runtime = n^2/ϕ
- Overall runtime = $\phi n^3 + n^2/\phi \ge n^{2.5}$

The First Bottleneck

Solution:

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

Recursion tree:

More than half of the vertices are cut-off, so the recursion tree depth is still logarithmic

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

small expander

Total #edges:

- Most incident edges of yellow vertices cross the border
- Since total #inter-cluster edges $\leq \phi n^2$ in an expander decomposition, total degree is $\leq \phi n^2$

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

Sanity check:

• New runtime = $n^2/\phi + \phi^2 n^3 = n^{8/3} < 2.5$

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

Sanity check:

• New runtime = $n^2/\phi + \phi^2 n^3 = n^{8/3 < 2.5}$

General cases:

- How to remove the assumption that most vertex degrees are $\geq 0.2n$
- How to achieve n^2 instead of $n^{8/3}$

- 1. Define $U_i = \{v \mid \deg(v) \in [2^i, 2^{i+1})\}$
- 2. Pick i such that $2^i |U_i|$ is maximized
- 3. Define subset of expanders $\mathscr{C}_{i} = \{ C \mid |C| \in [2^{j}, 2^{j+1}) \}$
- 4. Pick j such that $|\mathscr{C}_i \cap U_i|$ is maximized
- Compute isolating cuts for each $C \cap U_i$ 5. where $C \in \mathscr{C}_i$

- 1. Define $U_i = \{v \mid \deg(v) \in [2^i, 2^{i+1})\}$
- 2. Pick i such that $2^i |U_i|$ is maximized
- 3. Define subset of expanders $\mathscr{C}_{i} = \{ C \mid |C| \in [2^{j}, 2^{j+1}) \}$
- 4. Pick j such that $|\mathscr{C}_i \cap U_i|$ is maximized
- Compute isolating cuts for each $C \cap U_i$ 5. where $C \in \mathscr{C}_i$

- 1. Define $U_i = \{v \mid \deg(v) \in [2^i, 2^{i+1})\}$
- 2. Pick i such that $2^i |U_i|$ is maximized
- Define subset of expanders 3. $\mathscr{C}_{i} = \{ C \mid |C| \in [2^{j}, 2^{j+1}) \}$
- 4. Pick j such that $|\mathscr{C}_i \cap U_i|$ is maximized
- Compute isolating cuts for each $C \cap U_i$ 5. where $C \in \mathscr{C}_i$

- 1. Define $U_i = \{v \mid \deg(v) \in [2^i, 2^{i+1})\}$
- 2. Pick i such that $2^i |U_i|$ is maximized
- 3. Define subset of expanders $\mathscr{C}_{i} = \{ C \mid |C| \in [2^{j}, 2^{j+1}) \}$
- 4. Pick j such that $|\mathscr{C}_i \cap U_i|$ is maximized
- Compute isolating cuts for each $C \cap U_i$ 5. where $C \in \mathscr{C}_i$

- 1. Define $U_i = \{v \mid \deg(v) \in [2^i, 2^{i+1})\}$
- 2. Pick i such that $2^i |U_i|$ is maximized
- 3. Define subset of expanders $\mathscr{C}_{i} = \{ C \mid |C| \in [2^{j}, 2^{j+1}) \}$
- 4. Pick j such that $|\mathscr{C}_i \cap U_i|$ is maximized
- Compute isolating cuts for each $C \cap U_i$ where $C \in \mathscr{C}_i$

The First Bottleneck

Running time:

- Instead of 1/2 fraction of vertices
- Can prove $1/\log^2 n$ fraction of volume has been cut-off
- So the recursion tree has depth $\log^3 n$

2^{s+1} $\gamma s+2$ 2^{s}

The Second Bottleneck

Previous runtime:

- Type 3 min-cuts costs \bullet d = depth instances of max-flow
- Runtime = $(d + n/d) \cdot n^2$

Previous runtime:

- Type 3 min-cuts costs \bullet d = depth instances of max-flow
- Runtime = $(d + n/d) \cdot n^2$ ullet

New runtime:

Take advantage of expanders \bullet

The Second Bottleneck

Previous runtime:

- Type 3 min-cuts costs d = depth instances of max-flow
- Runtime = $(d + n/d) \cdot n^2$

New runtime:

• Take advantage of expanders

• Runtime =
$$n^2/\phi$$

laminar structure of min cuts

1. Sub-quadratic Gomory-Hu trees in weighted graphs?

2. Deterministic sub-cubic Gomory-Hu trees in weighted graphs?

Further Directions