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Problem Definition



All-Pairs Minimum Cuts
• Input: an undirected simple graph , n vertices and m edges


• Output: for every pair , the s-t min-cut value in G

G = (V, E)

s, t ∈ V

s t



Gomory-Hu Tree
Theorem [GH61]:  
Given any , there exists an edge-weighted tree , such 
that any s-t min-cut in T is also an s-t min-cut in G

G = (V, E) T = (V, F)
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Gomory-Hu Tree
Theorem [GH61]:  
Given any , there exists an edge-weighted tree , such 
that any s-t min-cut in T is also an s-t min-cut in G

G = (V, E) T = (V, F)

All-Pairs Min-Cuts: 
Given a Gomory-Hu tree  of , can query any s-t 
minimum cut in  time, so total time = runtime of GH + 

T = (V, F) G = (V, E)
Õ(1) Õ(n2)



History
reference total size of 


max-flow instances runtime graph type

Gomory & Hu 
1961 edge-weighted

Hariharan, Kavitha, Panigrahi, Bhalgat 
2007 simple

Abboud, Krauthgamer, Trabelsi 
2021 simple

Abboud, Krauthgamer, Trabelsi 
2021 simple

Li, Panigrahi, Saranurak 
2021 simple

Abboud, Krauthgamer, Trabelsi 
2022 simple

Ours simple

Abboud et al, 2022 edge-weighted

mn

n2.5

mn

n2+o(1)

(m + n1.75)1+o(1)

n2

m n2

n2+o(1)

n2.5

n2+o(1)

n2+o(1)

(m + n1.9)1+o(1)

n17/8

For real runtime, assume MaxFlow(m, n) =  [BLL+, 2021]m + n1.5

mn + n2.5



Classic Gomory-Hu Tree Algorithm 
[GH, 1961]



Classic Gomory-Hu Tree
Algorithm [GH’61] 

1. Pick arbitrary  and compute s-t min-cut 


2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)
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Classic Gomory-Hu Tree
Algorithm [GH’61] 
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2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)
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Classic Gomory-Hu Tree
Possible recursions of [GH’61]



Classic Gomory-Hu Tree
Possible recursion trees of [GH’61]
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Subcubic Gomory-Hu Tree 
[AKT, 2021]



Subcubic Gomory-Hu [AKT’21]
graph recursion tree



Ideally, each side contains half of the vertices
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Subcubic Gomory-Hu [AKT’21]
graph recursion tree



In reality, compute single-source min-cuts

Subcubic Gomory-Hu [AKT’21]
graph recursion tree

pivot



In reality, compute single-source min-cuts
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balanced, runtime = MF(m log n)

Subcubic Gomory-Hu [AKT’21]

……

many branches

graph recursion tree

pivot



In reality, compute single-source min-cuts

Single Source Min-Cuts [AKT’21]

Desired properties: 

1. Each part contains  vertices


2. At least  vertices are cut off


Consequence: 

• The recursion tree has  depth

≤ 0.5n

0.1n

O(log n)

pivot



Using Expander Decomposition [AKT’21]

pivot

Expander decomposition [SW’19]: 

Partition  s.t.


1. 


2. Each subgraph  is a  
-expander

V = C1 ∪ C2 ∪ ⋯ ∪ Ck

∂(Ci) = Õ(ϕvol(Ci)), ∀i

G{Ci}
ϕ
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Using Expander Decomposition [AKT’21]

pivot

Expander decomposition [SW’19]: 

Partition  s.t.


1. 


2. Each subgraph  is a  
-expander

V = C1 ∪ C2 ∪ ⋯ ∪ Ck

∂(Ci) = Õ(ϕvol(Ci)), ∀i

G{Ci}
ϕ

sparse border

dense interior

dense interior



pivot

Runtime Bottlenecks [AKT’21]

Type 1: small expanders: 

• Expander contains less than  
vertices


• An average vertex has at least  
out-going edges


• Total #average vertices 

0.1n

0.1n

= O(ϕn)

Simplifying assumption: most vertex degrees are at least 0.2n

≥ 0.1n

≥ 0.1n

≥ 0.1n
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Runtime Bottlenecks [AKT’21]

Type 2: large expanders & small cuts: 

• Expander contains  vertices


• Cuts in expander have size at most 

≥ 0.1n

Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n
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Runtime Bottlenecks [AKT’21]

Type 2: large expanders & small cuts: 

• Expander contains  vertices


• Cuts in expander have size at most 

≥ 0.1n

Õ(1/ϕ)

Solution: 

• Compute isolating cuts [AKT’21, 
LP’20] in each large expander

Simplifying assumption: most vertex degrees are at least 0.2n
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Runtime Bottlenecks [AKT’21]

Type 2: large expanders & small cuts: 

• Expander contains  vertices


• Cuts in expander have size at most 

≥ 0.1n

Õ(1/ϕ)

Solution: 

• Compute isolating cuts [AKT’21, 
LP’20] in each large expander

isolating cuts ≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n
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Runtime Bottlenecks [AKT’21]

Type 3: large expanders & large cuts: 

• Expander contains  vertices


• Cuts “minus” expander have size at 
most 

≥ 0.1n

Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n
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Type 3: large expanders & large cuts: 

• Expander contains  vertices


• Cuts “minus” expander have size at 
most 

≥ 0.1n

Õ(1/ϕ)

Solution: 

• Need to bound the depth of the 
laminar family of all such cuts

≤ Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n
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Runtime Bottlenecks [AKT’21]

Type 3: large expanders & large cuts: 

• Expander contains  vertices


• Cuts “minus” expander have size at 
most 

≥ 0.1n

Õ(1/ϕ)

Solution: 

• Need to bound the depth of the 
laminar family of all such cuts

depth of  
the laminar  

of cuts

Simplifying assumption: most vertex degrees are at least 0.2n



The First Bottleneck

Running time: 

• Assume MaxFlow(m, n) = m+n


• Type 1 min-cuts cost  instances of max-flow 
runtime = 


• Type 2 min-cuts cost  instances of isolating cuts 
runtime =  

• Overall runtime = 

ϕn
ϕn3

1/ϕ
n2/ϕ

ϕn3 + n2/ϕ ≥ n2.5

Simplifying assumption: most vertex degrees are at least 0.2n



The Second Bottleneck

Running time: 

• Type 3 min-cuts costs  
depth instances of max-flow 

• Before that, need  instances of 
max-flow to make the laminar depth 
bounded by 


• Overall runtime = 

d =

n/d

d

(d + n/d) ⋅ n2 ≥ n2.5

pivot

depth of  
the laminar  

of cuts

Simplifying assumption: most vertex degrees are at least 0.2n



Attack on the Runtime Bottlenecks



The First Bottleneck

Runtime bottleneck: 

• Type 1 min-cuts cost  instances of 
max-flow 
runtime = 


• Type 2 min-cuts cost  instances of 
isolating cuts 
runtime =  

• Overall runtime = 

ϕn

ϕn3

1/ϕ

n2/ϕ

ϕn3 + n2/ϕ ≥ n2.5

Solution: 

• Instead of doing type 1 and 2, 
just do type 1 or 2


• If type 2 involves more vertices, 
then only do type 2


• If type 1 involves more vertices, 
then the graph is sparse 
So max-flow should be cheaper
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The First Bottleneck

Solution: 

• Instead of doing type 1 and 2, 
just do type 1 or 2


• If type 2 involves more vertices, 
then only do type 2


• If type 1 involves more vertices, 
then the graph is sparse 
So max-flow should be cheaper

pivot

isolating cuts isolating cuts

Recursion tree: 

• More than half of the vertices are cut-off, so 
the recursion tree depth is still logarithmic



The First Bottleneck

Solution: 

• Instead of doing type 1 and 2, 
just do type 1 or 2


• If type 2 involves more vertices, 
then only do type 2


• If type 1 involves more vertices, 
then the graph is sparse 
So max-flow should be cheaper

pivot

small expander

Total #edges: 

• Most incident edges of yellow vertices cross the border


• Since total #inter-cluster edges  in an expander 
decomposition, total degree is

≤ ϕn2

≤ ϕn2

small expander

small expander
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Solution: 

• Instead of doing type 1 and 2, 
just do type 1 or 2


• If type 2 involves more vertices, 
then only do type 2


• If type 1 involves more vertices, 
then the graph is sparse 
So max-flow should be cheaper

Sanity check: 

• New runtime = n2/ϕ+ϕ2n3 = n8/3<2.5



The First Bottleneck

Solution: 

• Instead of doing type 1 and 2, 
just do type 1 or 2


• If type 2 involves more vertices, 
then only do type 2


• If type 1 involves more vertices, 
then the graph is sparse 
So max-flow should be cheaper

Sanity check: 

• New runtime = n2/ϕ+ϕ2n3 = n8/3<2.5

General cases: 

• How to remove the assumption that 
most vertex degrees are 


• How to achieve  instead of 

≥ 0.2n

n2 n8/3



The First Bottleneck
General cases: 

1. Define 


2. Pick i such that  is maximized


3. Define subset of expanders



4. Pick j such that  is maximized


5. Compute isolating cuts for each  
where 

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

expander size

2s 2s+1 2s+2
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The First Bottleneck
General cases: 

1. Define 


2. Pick i such that  is maximized


3. Define subset of expanders



4. Pick j such that  is maximized


5. Compute isolating cuts for each  
where 

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

2s 2s+1 2s+2

expander size

Running time: 

• Instead of 1/2 fraction of vertices


• Can prove  fraction of volume 
has been cut-off


• So the recursion tree has depth 

1/log2 n

log3 n



The Second Bottleneck

pivot

depth of  
the laminar  

of cuts

Previous runtime: 

• Type 3 min-cuts costs  
depth instances of max-flow 

• Runtime = 

d =

(d + n/d) ⋅ n2
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The Second Bottleneck
Previous runtime: 

• Type 3 min-cuts costs  
depth instances of max-flow 

• Runtime = 

d =

(d + n/d) ⋅ n2

New runtime: 

• Take advantage of expanders 

• Runtime = n2/ϕ

…
…

.

laminar structure of min cuts

a single branch 
+ 

a star



Further Directions

1. Sub-quadratic Gomory-Hu trees in weighted graphs?


2. Deterministic sub-cubic Gomory-Hu trees in weighted graphs?


