Faster Gomory-Hu Trees in Simple Graphs

Tianyi Zhang

Problem Definition

All-Pairs Minimum Cuts

- Input: an undirected simple graph $G=(V, E)$, n vertices and m edges
- Output: for every pair $s, t \in V$, the s-t min-cut value in G

Gomory-Hu Tree

Theorem [GH61]:

Given any $G=(V, E)$, there exists an edge-weighted tree $T=(V, F)$, such that any s-t min-cut in T is also an s-t min-cut in G

$G=(V, E)$

$T=(V, F)$

Gomory-Hu Tree

Theorem [GH61]:

Given any $G=(V, E)$, there exists an edge-weighted tree $T=(V, F)$, such that any s-t min-cut in T is also an s-t min-cut in G

$G \doteq(V, E)$

$T \xlongequal{\prime}=(V, F)$

Gomory-Hu Tree

Theorem [GH61]:

Given any $G=(V, E)$, there exists an edge-weighted tree $T=(V, F)$, such that any s-t min-cut in T is also an s-t min-cut in G

$G=(V, E)$

$T=(V, F)$

Gomory-Hu Tree

Theorem [GH61]:

Given any $G=(V, E)$, there exists an edge-weighted tree $T=(V, F)$, such that any s-t min-cut in T is also an s-t min-cut in G

All-Pairs Min-Cuts:

Given a Gomory-Hu tree $T=(V, F)$ of $G=(V, E)$, can query any s-t minimum cut in $\tilde{O}(1)$ time, so total time $=$ runtime of $\mathrm{GH}+\tilde{O}\left(n^{2}\right)$

History

reference	total size of max-flow instances	runtime	graph type
Gomory \& Hu 1961	$m n$	$m n+n^{2.5}$	edge-weighted
Hariharan, Kavitha, Panigrahi, Bhalgat 2007		$m n$	simple
Abboud, Krauthgamer, Trabelsi 2021	$n^{2.5}$	$n^{2.5}$	simple
Abboud, Krauthgamer, Trabelsi 2021	$n^{2+o(1)}$	$n^{2+o(1)}$	simple
Li, Panigrahi, Saranurak 2021	$n^{2+o(1)}$	$n^{2+o(1)}$	simple
Abboud, Krauthgamer, Trabelsi 2022	$\left(m+n^{1.75}\right)^{1+o(1)}$	$\left(m+n^{1.9}\right)^{1+o(1)}$	simple
Ours	n^{2}	$n^{17 / 8}$	simple
Abboud et al, 2022	m	n^{2}	edge-weighted

For real runtime, assume $\operatorname{MaxFlow}(\mathrm{m}, \mathrm{n})=m+n^{1.5}[\mathrm{BLL}+, 2021]$

Classic Gomory-Hu Tree Algorithm [GH, 1961]

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

$$
\begin{array}{ccc}
& 0 & 0 \\
0 & 0 & \\
& 0 & 0
\end{array}
$$ 0

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

0

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

0

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

Classic Gomory-Hu Tree

Algorithm [GH'61]

1. Pick arbitrary $s, t \in V$ and compute s-t min-cut ($C, V \backslash C$)
2. Contract one side and recur on the other side

Classic Gomory-Hu Tree

Possible recursions of [GH'61]

Classic Gomory-Hu Tree

Possible recursion trees of [GH'61]

$\square \quad \square \quad \square \quad \square \quad \square \quad \square$

Subcubic Gomory-Hu Tree [AKT, 2021]

Subcubic Gomory-Hu [AKT'21]

graph

recursion tree

	0	0	0	
	0			0
0				0
0			0	
	0			0

Subcubic Gomory-Hu [AKT’21]

recursion tree

Ideally, each side contains half of the vertices

Subcubic Gomory-Hu [AKT’21]

Ideally, each side contains half of the vertices
balanced, runtime $=M F(m \log n)$

Subcubic Gomory-Hu [AKT’21]

recursion tree

In reality, compute single-source min-cuts

Subcubic Gomory-Hu [AKT’21]

In reality, compute single-source min-cuts

ㅁ ㅁ ㅁ ㅁ ロ
balanced, runtime $=M F(m \log n)$

Single Source Min-Cuts [AKT'21]

In reality, compute single-source min-cuts

Using Expander Decomposition [AKT'21]

	0	0	0
0	0	0	Expander decomposition [SW'19]: Partition $V=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$ s.t. 0
0	0	1. $\partial\left(C_{i}\right)=\tilde{O}\left(\phi \operatorname{vol}\left(C_{i}\right)\right), \forall i$ 2. Each subgraph $G\left\{C_{i}\right\}$ is a ϕ-expander	

Using Expander Decomposition [AKT’21]

Expander decomposition [SW'19]:
Partition $V=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$ s.t.

1. $\partial\left(C_{i}\right)=\tilde{O}\left(\phi \operatorname{vol}\left(C_{i}\right)\right), \forall i$
2. Each subgraph $G\left\{C_{i}\right\}$ is a ϕ-expander

Using Expander Decomposition [AKT'21]

$$
\begin{aligned}
& \text { Expander decomposition [SW'19]: } \\
& \text { Partition } V=C_{1} \cup C_{2} \cup \cdots \cup C_{k} \text { s.t. } \\
& \text { 1. } \partial\left(C_{i}\right)=\tilde{O}\left(\phi \operatorname{vol}\left(C_{i}\right)\right), \forall i \\
& \text { 2. Each subgraph } G\left\{C_{i}\right\} \text { is a } \\
& \phi \text {-expander }
\end{aligned}
$$

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 1: small expanders:

- Expander contains less than $0.1 n$ vertices
- An average vertex has at least $0.1 n$ out-going edges
- Total \#average vertices $=O(\phi n)$

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 1: small expanders:
- Expander contains less than $0.1 n$
vertices
- An average vertex has at least $0.1 n$
out-going edges
- Total \#average vertices $=O(\phi n)$

Solution:
- Compute min-cut for each average vertex
one-by-one

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 1: small expanders:
- Expander contains less than $0.1 n$
vertices
- An average vertex has at least $0.1 n$
out-going edges
- Total \#average vertices $=O(\phi n)$

Solution:
- Compute min-cut for each average vertex
one-by-one

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 1: small expanders:
- Expander contains less than $0.1 n$
vertices
- An average vertex has at least $0.1 n$
out-going edges
- Total \#average vertices $=O(\phi n)$

Solution:
- Compute min-cut for each average vertex
one-by-one

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 1: small expanders:
- Expander contains less than $0.1 n$
vertices
- An average vertex has at least $0.1 n$
out-going edges
- Total \#average vertices $=O(\phi n)$

Solution:
- Compute min-cut for each average vertex
one-by-one

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 2: large expanders $\&$ small cuts:
- Expander contains $\geq 0.1 n$ vertices
- Cuts in expander have size at most
$\tilde{O}(1 / \phi)$

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Solution:

- Compute isolating cuts [AKT'21, LP'20] in each large expander

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 2: large expanders $\&$ small cuts:
- Expander contains $\geq 0.1 n$ vertices
- Cuts in expander have size at most
$\tilde{O}(1 / \phi)$

Solution:

- Compute isolating cuts [AKT'21, LP'20] in each large expander

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Type 3: large expanders \& large cuts:
- Expander contains $\geq 0.1 n$ vertices
- Cuts "minus" expander have size at
most $\tilde{O}(1 / \phi)$

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

Runtime Bottlenecks [AKT'21]

Simplifying assumption: most vertex degrees are at least $0.2 n$

The First Bottleneck

Simplifying assumption: most vertex degrees are at least $0.2 n$

Running time:

- Assume MaxFlow(m, n) = m+n
- Type 1 min-cuts cost ϕn instances of max-flow runtime $=\phi n^{3}$
- Type 2 min-cuts cost $1 / \phi$ instances of isolating cuts runtime $=n^{2} / \phi$
- Overall runtime $=\phi n^{3}+n^{2} / \phi \geq n^{2.5}$

The Second Bottleneck

Simplifying assumption: most vertex degrees are at least $0.2 n$

Running time:

- Type 3 min-cuts costs
$d=$ depth instances of max-flow
- Before that, need n / d instances of max-flow to make the laminar depth bounded by d
- Overall runtime $=(d+n / d) \cdot n^{2} \geq n^{2.5}$

depth of
the laminar

Attack on the Runtime Bottlenecks

The First Bottleneck

Runtime bottleneck:

- Type 1 min-cuts cost ϕn instances of max-flow
runtime $=\phi n^{3}$
- Type 2 min-cuts cost $1 / \phi$ instances of isolating cuts
runtime $=n^{2} / \phi$
- Overall runtime $=\phi n^{3}+n^{2} / \phi \geq n^{2.5}$

Solution:

- Instead of doing type 1 and 2 , just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

Solution:

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

The First Bottleneck

Solution:

- Instead of doing type 1 and 2, just do type 1 or 2
- If type 2 involves more vertices, then only do type 2

isolating cuts

isolating cuts
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

Recursion tree:

- More than half of the vertices are cut-off, so the recursion tree depth is still logarithmic

The First Bottleneck

Solution:

- Instead of doing type 1 and 2 , just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

small expander

Total \#edges:
- Most incident edges of yellow vertices cross the border
- Since total \#inter-cluster edges $\leq \phi n^{2}$ in an expander
decomposition, total degree is $\leq \phi n^{2}$

- Most incident edges of yellow vertices cross the border
- Since total \#inter-cluster edges $\leq \phi n^{2}$ in an expander decomposition, total degree is $\leq \phi n^{2}$

The First Bottleneck

Solution:

- Instead of doing type 1 and 2 , just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

Sanity check:

- New runtime $=n^{2} / \phi+\phi^{2} n^{3}=n^{8 / 3<2.5}$

The First Bottleneck

Solution:

- Instead of doing type 1 and 2 , just do type 1 or 2
- If type 2 involves more vertices, then only do type 2
- If type 1 involves more vertices, then the graph is sparse So max-flow should be cheaper

Sanity check:

- New runtime $=n^{2} / \phi+\phi^{2} n^{3}=n^{8 / 3<2.5}$

General cases:

- How to remove the assumption that most vertex degrees are $\geq 0.2 n$
- How to achieve n^{2} instead of $n^{8 / 3}$

The First Bottleneck

General cases:

1. Define $U_{i}=\left\{v \mid \operatorname{deg}(v) \in\left[2^{i}, 2^{i+1}\right)\right\}$
2. Pick isuch that $2^{i}\left|U_{i}\right|$ is maximized
3. Define subset of expanders $\mathscr{C}_{j}=\left\{C| | C \mid \in\left[2^{j}, 2^{j+1}\right)\right\}$
4. Pick j such that $\left|\mathscr{C}_{j} \cap U_{i}\right|$ is maximized
5. Compute isolating cuts for each $C \cap U_{i}$ where $C \in \mathscr{C}_{j}$

The First Bottleneck

General cases:

1. Define $U_{i}=\left\{v \mid \operatorname{deg}(\nu) \in\left[2^{i}, 2^{i+1}\right)\right\}$
2. Pick i such that $2^{i}\left|U_{i}\right|$ is maximized
3. Define subset of expanders
$\mathscr{C}_{j}=\left\{C| | C \mid \in\left[2^{j}, 2^{j+1}\right)\right\}$
4. Pick j such that $\left|\mathscr{C}_{j} \cap U_{i}\right|$ is maximized
5. Compute isolating cuts for each $C \cap U_{i}$ where $C \in \mathscr{C}_{j}$

The First Bottleneck

General cases:

1. Define $U_{i}=\left\{v \mid \operatorname{deg}(v) \in\left[2^{i}, 2^{i+1}\right)\right\}$
2. Pick isuch that $2^{i}\left|U_{i}\right|$ is maximized
3. Define subset of expanders

$$
\mathscr{C}_{j}=\left\{C| | C \mid \in\left[2^{j}, 2^{j+1}\right)\right\}
$$

4. Pick j such that $\left|\mathscr{C}_{j} \cap U_{i}\right|$ is maximized
5. Compute isolating cuts for each $C \cap U_{i}$ where $C \in \mathscr{C}_{j}$

The First Bottleneck

General cases:

1. Define $U_{i}=\left\{v \mid \operatorname{deg}(v) \in\left[2^{i}, 2^{i+1}\right)\right\}$
2. Pick i such that $2^{i}\left|U_{i}\right|$ is maximized
3. Define subset of expanders
$\mathscr{C}_{j}=\left\{C| | C \mid \in\left[2^{j}, 2^{j+1}\right)\right\}$
4. Pick j such that $\left|\mathscr{C}_{j} \cap U_{i}\right|$ is maximized
5. Compute isolating cuts for each $C \cap U_{i}$ where $C \in \mathscr{C}_{j}$

The First Bottleneck

General cases:

1. Define $U_{i}=\left\{v \mid \operatorname{deg}(v) \in\left[2^{i}, 2^{i+1}\right)\right\}$
2. Pick i such that $2^{i}\left|U_{i}\right|$ is maximized
3. Define subset of expanders
$\mathscr{C}_{j}=\left\{C| | C \mid \in\left[2^{j}, 2^{j+1}\right)\right\}$
4. Pick j such that $\left|\mathscr{C}_{j} \cap U_{i}\right|$ is maximized
5. Compute isolating cuts for each $C \cap U_{i}$ where $C \in \mathscr{C}_{j}$

The Second Bottleneck

Previous runtime:

- Type 3 min-cuts costs $d=$ depth instances of max-flow
- Runtime $=(d+n / d) \cdot n^{2}$

The Second Bottleneck

Previous runtime:

- Type 3 min-cuts costs
$d=$ depth instances of max-flow
- Runtime $=(d+n / d) \cdot n^{2}$

New runtime:

- Take advantage of expanders

0
pivot

The Second Bottleneck

Previous runtime:

- Type 3 min-cuts costs
$d=$ depth instances of max-flow
- Runtime $=(d+n / d) \cdot n^{2}$

New runtime:

- Take advantage of expanders
- Runtime $=n^{2} / \phi$
laminar structure of min cuts

Further Directions

1. Sub-quadratic Gomory-Hu trees in weighted graphs?
2. Deterministic sub-cubic Gomory-Hu trees in weighted graphs?
