
Faster Gomory-Hu Trees

in Simple Graphs

Tianyi Zhang

Problem Definition

All-Pairs Minimum Cuts
• Input: an undirected simple graph , n vertices and m edges

• Output: for every pair , the s-t min-cut value in G

G = (V, E)

s, t ∈ V

s t

Gomory-Hu Tree
Theorem [GH61]:  
Given any , there exists an edge-weighted tree , such
that any s-t min-cut in T is also an s-t min-cut in G

G = (V, E) T = (V, F)

2 3

3 3

3

2

G = (V, E) T = (V, F)

Gomory-Hu Tree
Theorem [GH61]:  
Given any , there exists an edge-weighted tree , such
that any s-t min-cut in T is also an s-t min-cut in G

G = (V, E) T = (V, F)

2 3

3

3

23

G = (V, E) T = (V, F)

Gomory-Hu Tree
Theorem [GH61]:  
Given any , there exists an edge-weighted tree , such
that any s-t min-cut in T is also an s-t min-cut in G

G = (V, E) T = (V, F)

2 3

3

3

23

G = (V, E) T = (V, F)

Gomory-Hu Tree
Theorem [GH61]:  
Given any , there exists an edge-weighted tree , such
that any s-t min-cut in T is also an s-t min-cut in G

G = (V, E) T = (V, F)

All-Pairs Min-Cuts: 
Given a Gomory-Hu tree of , can query any s-t
minimum cut in time, so total time = runtime of GH +

T = (V, F) G = (V, E)
Õ(1) Õ(n2)

History
reference total size of

max-flow instances runtime graph type

Gomory & Hu 
1961 edge-weighted

Hariharan, Kavitha, Panigrahi, Bhalgat 
2007 simple

Abboud, Krauthgamer, Trabelsi 
2021 simple

Abboud, Krauthgamer, Trabelsi 
2021 simple

Li, Panigrahi, Saranurak 
2021 simple

Abboud, Krauthgamer, Trabelsi 
2022 simple

Ours simple

Abboud et al, 2022 edge-weighted

mn

n2.5

mn

n2+o(1)

(m + n1.75)1+o(1)

n2

m n2

n2+o(1)

n2.5

n2+o(1)

n2+o(1)

(m + n1.9)1+o(1)

n17/8

For real runtime, assume MaxFlow(m, n) = [BLL+, 2021]m + n1.5

mn + n2.5

Classic Gomory-Hu Tree Algorithm 
[GH, 1961]

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

2 3

3

3

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

2 3

3

3

3

3

2

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

2 3

3

3

3

2

Classic Gomory-Hu Tree
Algorithm [GH’61]

1. Pick arbitrary and compute s-t min-cut

2. Contract one side and recur on the other side

s, t ∈ V (C, V∖C)

2 3

3

Classic Gomory-Hu Tree
Possible recursions of [GH’61]

Classic Gomory-Hu Tree
Possible recursion trees of [GH’61]

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

balanced, runtime = MF(m log n) unbalanced, runtime = MF(mn)

Subcubic Gomory-Hu Tree 
[AKT, 2021]

Subcubic Gomory-Hu [AKT’21]
graph recursion tree

Ideally, each side contains half of the vertices

Subcubic Gomory-Hu [AKT’21]
graph recursion tree

Ideally, each side contains half of the vertices

…
…

…
…

…
…

…
…

…
…

…
…

balanced, runtime = MF(m log n)

Subcubic Gomory-Hu [AKT’21]
graph recursion tree

In reality, compute single-source min-cuts

Subcubic Gomory-Hu [AKT’21]
graph recursion tree

pivot

In reality, compute single-source min-cuts

…
…

…
…

…
…

…
…

…
…

…
…

balanced, runtime = MF(m log n)

Subcubic Gomory-Hu [AKT’21]

……

many branches

graph recursion tree

pivot

In reality, compute single-source min-cuts

Single Source Min-Cuts [AKT’21]

Desired properties:

1. Each part contains vertices

2. At least vertices are cut off

Consequence:

• The recursion tree has depth

≤ 0.5n

0.1n

O(log n)

pivot

Using Expander Decomposition [AKT’21]

pivot

Expander decomposition [SW’19]:

Partition s.t.

1.

2. Each subgraph is a  
-expander

V = C1 ∪ C2 ∪ ⋯ ∪ Ck

∂(Ci) = Õ(ϕvol(Ci)), ∀i

G{Ci}
ϕ

Using Expander Decomposition [AKT’21]

pivot

Expander decomposition [SW’19]:

Partition s.t.

1.

2. Each subgraph is a  
-expander

V = C1 ∪ C2 ∪ ⋯ ∪ Ck

∂(Ci) = Õ(ϕvol(Ci)), ∀i

G{Ci}
ϕ

Using Expander Decomposition [AKT’21]

pivot

Expander decomposition [SW’19]:

Partition s.t.

1.

2. Each subgraph is a  
-expander

V = C1 ∪ C2 ∪ ⋯ ∪ Ck

∂(Ci) = Õ(ϕvol(Ci)), ∀i

G{Ci}
ϕ

sparse border

dense interior

dense interior

pivot

Runtime Bottlenecks [AKT’21]

Type 1: small expanders:

• Expander contains less than
vertices

• An average vertex has at least
out-going edges

• Total #average vertices

0.1n

0.1n

= O(ϕn)

Simplifying assumption: most vertex degrees are at least 0.2n

≥ 0.1n

≥ 0.1n

≥ 0.1n

pivot

Runtime Bottlenecks [AKT’21]

Type 1: small expanders:

• Expander contains less than
vertices

• An average vertex has at least
out-going edges

• Total #average vertices

0.1n

0.1n

= O(ϕn)

Simplifying assumption: most vertex degrees are at least 0.2n

≥ 0.1n

≥ 0.1n

≥ 0.1n

Solution:

• Compute min-cut for each average vertex
one-by-one

pivot

Runtime Bottlenecks [AKT’21]

Type 1: small expanders:

• Expander contains less than
vertices

• An average vertex has at least
out-going edges

• Total #average vertices

0.1n

0.1n

= O(ϕn)

Simplifying assumption: most vertex degrees are at least 0.2n

≥ 0.1n

≥ 0.1n

≥ 0.1n

Solution:

• Compute min-cut for each average vertex
one-by-one

pivot

Runtime Bottlenecks [AKT’21]

Type 1: small expanders:

• Expander contains less than
vertices

• An average vertex has at least
out-going edges

• Total #average vertices

0.1n

0.1n

= O(ϕn)

Simplifying assumption: most vertex degrees are at least 0.2n

≥ 0.1n

≥ 0.1n

≥ 0.1n

Solution:

• Compute min-cut for each average vertex
one-by-one

pivot

Runtime Bottlenecks [AKT’21]

Type 1: small expanders:

• Expander contains less than
vertices

• An average vertex has at least
out-going edges

• Total #average vertices

0.1n

0.1n

= O(ϕn)

Simplifying assumption: most vertex degrees are at least 0.2n

≥ 0.1n

≥ 0.1n

≥ 0.1n

Solution:

• Compute min-cut for each average vertex
one-by-one

pivot

Runtime Bottlenecks [AKT’21]

Type 2: large expanders & small cuts:

• Expander contains vertices

• Cuts in expander have size at most

≥ 0.1n

Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

Runtime Bottlenecks [AKT’21]

Type 2: large expanders & small cuts:

• Expander contains vertices

• Cuts in expander have size at most

≥ 0.1n

Õ(1/ϕ)

Solution:

• Compute isolating cuts [AKT’21,
LP’20] in each large expander

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

Runtime Bottlenecks [AKT’21]

Type 2: large expanders & small cuts:

• Expander contains vertices

• Cuts in expander have size at most

≥ 0.1n

Õ(1/ϕ)

Solution:

• Compute isolating cuts [AKT’21,
LP’20] in each large expander

isolating cuts ≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

≤ Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

Runtime Bottlenecks [AKT’21]

Type 3: large expanders & large cuts:

• Expander contains vertices

• Cuts “minus” expander have size at
most

≥ 0.1n

Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

Runtime Bottlenecks [AKT’21]

Type 3: large expanders & large cuts:

• Expander contains vertices

• Cuts “minus” expander have size at
most

≥ 0.1n

Õ(1/ϕ)

≤ Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

Runtime Bottlenecks [AKT’21]

Type 3: large expanders & large cuts:

• Expander contains vertices

• Cuts “minus” expander have size at
most

≥ 0.1n

Õ(1/ϕ)

Solution:

• Need to bound the depth of the
laminar family of all such cuts

≤ Õ(1/ϕ)

Simplifying assumption: most vertex degrees are at least 0.2n

pivot

Runtime Bottlenecks [AKT’21]

Type 3: large expanders & large cuts:

• Expander contains vertices

• Cuts “minus” expander have size at
most

≥ 0.1n

Õ(1/ϕ)

Solution:

• Need to bound the depth of the
laminar family of all such cuts

depth of  
the laminar  

of cuts

Simplifying assumption: most vertex degrees are at least 0.2n

The First Bottleneck

Running time:

• Assume MaxFlow(m, n) = m+n

• Type 1 min-cuts cost instances of max-flow 
runtime =

• Type 2 min-cuts cost instances of isolating cuts 
runtime =

• Overall runtime =

ϕn
ϕn3

1/ϕ
n2/ϕ

ϕn3 + n2/ϕ ≥ n2.5

Simplifying assumption: most vertex degrees are at least 0.2n

The Second Bottleneck

Running time:

• Type 3 min-cuts costs  
depth instances of max-flow

• Before that, need instances of
max-flow to make the laminar depth
bounded by

• Overall runtime =

d =

n/d

d

(d + n/d) ⋅ n2 ≥ n2.5

pivot

depth of  
the laminar  

of cuts

Simplifying assumption: most vertex degrees are at least 0.2n

Attack on the Runtime Bottlenecks

The First Bottleneck

Runtime bottleneck:

• Type 1 min-cuts cost instances of
max-flow 
runtime =

• Type 2 min-cuts cost instances of
isolating cuts 
runtime =

• Overall runtime =

ϕn

ϕn3

1/ϕ

n2/ϕ

ϕn3 + n2/ϕ ≥ n2.5

Solution:

• Instead of doing type 1 and 2, 
just do type 1 or 2

• If type 2 involves more vertices,
then only do type 2

• If type 1 involves more vertices,
then the graph is sparse 
So max-flow should be cheaper

The First Bottleneck

Solution:

• Instead of doing type 1 and 2, 
just do type 1 or 2

• If type 2 involves more vertices,
then only do type 2

• If type 1 involves more vertices,
then the graph is sparse 
So max-flow should be cheaper

The First Bottleneck

Solution:

• Instead of doing type 1 and 2, 
just do type 1 or 2

• If type 2 involves more vertices,
then only do type 2

• If type 1 involves more vertices,
then the graph is sparse 
So max-flow should be cheaper

pivot

isolating cuts isolating cuts

Recursion tree:

• More than half of the vertices are cut-off, so
the recursion tree depth is still logarithmic

The First Bottleneck

Solution:

• Instead of doing type 1 and 2, 
just do type 1 or 2

• If type 2 involves more vertices,
then only do type 2

• If type 1 involves more vertices,
then the graph is sparse 
So max-flow should be cheaper

pivot

small expander

Total #edges:

• Most incident edges of yellow vertices cross the border

• Since total #inter-cluster edges in an expander
decomposition, total degree is

≤ ϕn2

≤ ϕn2

small expander

small expander

The First Bottleneck

Solution:

• Instead of doing type 1 and 2, 
just do type 1 or 2

• If type 2 involves more vertices,
then only do type 2

• If type 1 involves more vertices,
then the graph is sparse 
So max-flow should be cheaper

Sanity check:

• New runtime = n2/ϕ+ϕ2n3 = n8/3<2.5

The First Bottleneck

Solution:

• Instead of doing type 1 and 2, 
just do type 1 or 2

• If type 2 involves more vertices,
then only do type 2

• If type 1 involves more vertices,
then the graph is sparse 
So max-flow should be cheaper

Sanity check:

• New runtime = n2/ϕ+ϕ2n3 = n8/3<2.5

General cases:

• How to remove the assumption that
most vertex degrees are

• How to achieve instead of

≥ 0.2n

n2 n8/3

The First Bottleneck
General cases:

1. Define

2. Pick i such that is maximized

3. Define subset of expanders

4. Pick j such that is maximized

5. Compute isolating cuts for each
where

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

expander size

2s 2s+1 2s+2

The First Bottleneck
General cases:

1. Define

2. Pick i such that is maximized

3. Define subset of expanders

4. Pick j such that is maximized

5. Compute isolating cuts for each
where

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

2s 2s+1 2s+2

expander size

The First Bottleneck
General cases:

1. Define

2. Pick i such that is maximized

3. Define subset of expanders

4. Pick j such that is maximized

5. Compute isolating cuts for each
where

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

2s 2s+1 2s+2

expander size

The First Bottleneck
General cases:

1. Define

2. Pick i such that is maximized

3. Define subset of expanders

4. Pick j such that is maximized

5. Compute isolating cuts for each
where

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

2s 2s+1 2s+2

expander size

The First Bottleneck
General cases:

1. Define

2. Pick i such that is maximized

3. Define subset of expanders

4. Pick j such that is maximized

5. Compute isolating cuts for each
where

Ui = {v ∣ deg(v) ∈ [2i,2i+1)}

2i |Ui |

𝒞j = {C ∣ |C | ∈ [2j,2j+1)}

|𝒞j ∩ Ui |

C ∩ Ui
C ∈ 𝒞j

2s 2s+1 2s+2

expander size

Running time:

• Instead of 1/2 fraction of vertices

• Can prove fraction of volume
has been cut-off

• So the recursion tree has depth

1/log2 n

log3 n

The Second Bottleneck

pivot

depth of  
the laminar  

of cuts

Previous runtime:

• Type 3 min-cuts costs  
depth instances of max-flow

• Runtime =

d =

(d + n/d) ⋅ n2

The Second Bottleneck
Previous runtime:

• Type 3 min-cuts costs  
depth instances of max-flow

• Runtime =

d =

(d + n/d) ⋅ n2

pivot

…
…

.New runtime:

• Take advantage of expanders

The Second Bottleneck
Previous runtime:

• Type 3 min-cuts costs  
depth instances of max-flow

• Runtime =

d =

(d + n/d) ⋅ n2

New runtime:

• Take advantage of expanders

• Runtime = n2/ϕ

…
…

.

laminar structure of min cuts

a single branch
+

a star

Further Directions

1. Sub-quadratic Gomory-Hu trees in weighted graphs?

2. Deterministic sub-cubic Gomory-Hu trees in weighted graphs?

