Faster ($\Delta + 1$)-Edge Coloring: Breaking the $mn^{1/2}$ Time Barrier

Sayan Bhattacharya¹, Din Carmon², Martín Costa¹, Shay Solomon², Tianyi Zhang³

University of Warwick¹

Tel Aviv University² ETH Zürich³

- Given an undirected simple graph G = (V, E)
- different colors

• Compute a coloring $\chi: E \to \{1, 2, \dots, \kappa\}$ s.t. adjacent edges have

- Given an undirected simple graph G = (V, E)
- Compute a coloring $\chi: E \to \{1, 2, \dots, \kappa\}$ s.t. adjacent edges have different colors

Why is edge coloring relevant to this workshop?

- Studies in the **distributed** setting: [EPS16] [BEPS16] [FGK17] [GHK18] [CHL+19] [Bern22] [Chr23] ...
- Studies in the **dynamic** setting: [BM17] [BCHN18] [DHZ19] [Chr23] [BCPS24] [Chr24]

- Given an undirected simple graph G = (V, E)
- Compute a coloring $\chi : E \to \{1, 2, ..., \kappa\}$ s.t. adjacent edges have different colors. What is the smallest possible κ ?
- **Folklore:** $\kappa \ge \Delta(G)$, here $\Delta = \max\{\deg(v)\}$
- Upper bounds: $\kappa \leq \Delta$ in bipartite graphs, $\kappa \leq \Delta + 1$ in general graphs [Vizing, 1964]
- Hardness: NP-hard to decide $\kappa = \Delta$ or $\Delta + 1$ [Holyer, 1981]

Question: The exact runtime of $(\Delta + 1)$ -edge coloring?

 Δ -edge coloring in bipartite graphs is in near-linear time e.g. in [COS, 2001]

Question: The exact runtime of $(\Delta + 1)$ -edge coloring?

<u>A sparse history of runtime complexities:</u>

- O(mn)[Vizing, Diskret. Analiz 1964]
- $\tilde{O}(\min\{mn^{1/2}, m\Delta\})$ [Arjomandi, INFOR 1982] [Gabow et al, 1985]
- $O(mn^{1/2})$ log-shaving [Sinnamon, 2019]

 Δ -edge coloring in bipartite graphs is in near-linear time e.g. in [COS, 2001]

- n = |V|, m = |E|

Question: The exact runtime of $(\Delta + 1)$ -edge coloring?

<u>A sparse history of runtime complexities:</u>

- O(mn)[Vizing, Diskret. Analiz 1964]
- $\tilde{O}(\min\{mn^{1/2}, m\Delta\})$ [Arjomandi, INFOR 1982] [Gabow et al, 1985]
- $O(mn^{1/2})$ log-shaving [Sinnamon, 2019]
- $O(mn^{1/3})$ [BCCSZ, FOCS 2024]
- $\tilde{O}(n^2)$ concurrent

 Δ -edge coloring in bipartite graphs is in near-linear time e.g. in [COS, 2001]

- n = |V|, m = |E|

[Assadi, SODA 2025]

Question: The exact runtime of $(\Delta + 1)$ -edge coloring?

<u>A sparse history of runtime complexities:</u>

- O(mn)[Vizing, Diskret. Analiz 1964]
- $\tilde{O}(\min\{mn^{1/2}, m\Delta\})$ [Arjomandi, INFOR 1982] [Gabow et al, 1985]
- $O(mn^{1/2})$ log-shaving [Sinnamon, 2019]
- $\tilde{O}(mn^{1/3})$ [BCCSZ, FOCS 2024]
- $\tilde{O}(n^2)$ concurrent

 Δ -edge coloring in bipartite graphs is in near-linear time e.g. in [COS, 2001]

- n = |V|, m = |E|

[Assadi, SODA 2025]

- 1. Divide $G = G_1 \cup G_2$ such that $\Delta(G_1), \Delta(G_2) \leq \Delta/2$
- 2. Color G_1, G_2 recursively using $2 \cdot (\Delta/2 + 1) = \Delta + 2$ colors
- Delete the least-popular color, 3. $O(m/\Delta) = O(n)$ uncolored edges

- **1.** Divide $G = G_1 \cup G_2$ such that $\Delta(G_1), \Delta(G_2) \leq \Delta/2$
- 2. Color G_1, G_2 recursively using $2 \cdot (\Delta/2 + 1) = \Delta + 2$ colors
- Delete the least-popular color, 3. $O(m/\Delta) = O(n)$ uncolored edges

- 1. Divide $G = G_1 \cup G_2$ such that $\Delta(G_1), \Delta(G_2) \leq \Delta/2$
- **2.** Color G_1, G_2 recursively using $2 \cdot (\Delta/2 + 1) = \Delta + 2$ colors
- Delete the least-popular color, 3. $O(m/\Delta) = O(n)$ uncolored edges

Previous Bottleneck G_1 uses {

- 1. Divide $G = G_1 \cup G_2$ such that $\Delta(G_1), \Delta(G_2) \leq \Delta/2$
- **2.** Color G_1, G_2 recursively using $2 \cdot (\Delta/2 + 1) = \Delta + 2$ colors
- Delete the least-popular color, 3. $O(m/\Delta) = O(n)$ uncolored edges

- 1. Divide $G = G_1 \cup G_2$ such that $\Delta(G_1), \Delta(G_2) \leq \Delta/2$
- 2. Color G_1, G_2 recursively using $2 \cdot (\Delta/2 + 1) = \Delta + 2$ colors

Delete the least-popular color, $O(m/\Delta) = O(n)$ uncolored edges

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer:** Flip alternating paths (bipartite), Vizing fans/chains (general)

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer: Flip alternating paths (bipartite)**, Vizing fans/chains (general)

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer: Flip alternating paths (bipartite)**, Vizing fans/chains (general)

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer: Flip alternating paths (bipartite)**, Vizing fans/chains (general)

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer: Flip alternating paths (bipartite)**, Vizing fans/chains (general)

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?

Answer: Flip alternating paths (bipartite), Vizing fans/chains (general)

Exercise: Where did we use bipartite-ness?

Previous Bottleneck

Assign blue to this edge available

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer:** Flip alternating paths (bipartite), **Vizing fans/chains (general)**

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer:** Flip alternating paths (bipartite), **Vizing fans/chains (general)**

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer:** Flip alternating paths (bipartite), **Vizing fans/chains (general)**

Vizing fan: a subset of neighbors

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- Answer: Flip alternating paths (bipartite), Vizing fans/chains (general)

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- Subtask: How to extend to a single uncolored edge?
- **Answer:** Flip alternating paths (bipartite), **Vizing fans/chains (general)**

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- **Runtime** of color extension = **length** of alternating path
- **Technique:** Analyze the average length of alternating paths

- Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges
- **Runtime** of color extension = **length** of alternating path
- **Technique:** Analyze the average length of alternating paths

Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges

Runtime of color extension = **length** of alternating path

Technique: Analyze the average length of alternating paths

The an average type contains $\geq n/\Delta^2$ edges

Previous Bottleneck

- - - - - - - -

Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges

Runtime of color extension = **length** of alternating path

Technique: Analyze the average length of alternating paths

The an average type contains $\geq n/\Delta^2$ edges

Alt-paths are edgedisjoint, ave-len $\leq \Delta^2$

Main task: Extend a partial $(\Delta + 1)$ -coloring to the last O(n) edges

Runtime of color extension = **length** of alternating path

Technique: Analyze the average length of alternating paths

The an average type contains $\geq n/\Delta^2$ edges

Alt-paths are edge-

disjoint, ave-len $\leq \Delta^2$

Coloring O(n) edges takes $O(\Delta^2 n)$ time

Main observation:

It could be easier if uncolored edges form star subgraphs Reason: An average type contains more uncolored edges

uncolored edges scattered around

uncolored edges forming stars

Main observation:

It could be easier if uncolored edges form star subgraphs Reason: An average type contains more uncolored edges

uncolored edges scattered around

There are ways to reach this precondition efficiently

uncolored edges forming stars

Main observation:

It could be easier if uncolored edges form star subgraphs

Reason: An average type contains more uncolored edges (bipartite graphs)

Main observation:

It could be easier if uncolored edges form star subgraphs

Reason: An average type contains more uncolored edges (bipartite graphs)

Main observation: It could be easier if uncolored edges form star subgraphs

- Reason: An average type contains more uncolored edges (bipartite graphs)
 - Total #type count > *nd*

Main observation: It could be easier if uncolored edges form star subgraphs

> Total #type count > *nd* An average type has $\geq nd/\Delta^2$ edges

Reason: An average type contains more uncolored edges (bipartite graphs)

Main observation: It could be easier if uncolored edges form star subgraphs

- Reason: An average type contains more uncolored edges (bipartite graphs)
 - Total #type count > *nd* An average type has $\geq nd/\Delta^2$ edges

Issue in general graphs:

- Edge types are defined by the Vizing fan structure
- Edges in the star might generate the same alternating path

Issue in general graphs:

- Edge types are defined by the Vizing fan structure
- Edges in the star might generate the same alternating path

In **bipartite** graphs, edges always generate different alternating paths

Issue in general graphs:

- Edge types are defined by the Vizing fan structure
- Edges in the star might generate the same alternating path

In **bipartite** graphs, edges always generate different alternating paths

Vizing fan

Issue in general graphs:

- Edge types are defined by the Vizing fan structure
- Edges in the star might generate the same alternating path

In **bipartite** graphs, edges always generate different alternating paths

Observation:

• Use u-fans to avoid Vizing fans and go back to bipartite case [Gabow et al., 1985]

Observation:

• Use u-fans to avoid Vizing fans and go back to bipartite case [Gabow et al., 1985]

<u>u-fan:</u> a pair of leaves missing the same color

Observation:

One of the alternating path must be useful for color extension

• Use u-fans to avoid Vizing fans and go back to bipartite case [Gabow et al., 1985]

Observation:

One of the alternating path must be useful for color extension

• Use u-fans to avoid Vizing fans and go back to bipartite case [Gabow et al., 1985]

Issue in general graphs:

- Edge types are defined by the Vizing fan structure
- Edges in the star might generate the same alternating path

Issue in general graphs:

- Edge types are defined by the Vizing fan structure
- Edges in the star might generate the same alternating path

Issue in general graphs:

Edges in the star might generate the same alternating path **Bipartite analysis**

Use u-fans instead

What if leaf missing colors are different in the same star?

What if leaf missing colors are different in the same star?

What if leaf **missing colors are different** in the same star?

What if leaf **missing colors are different** in the same star?

What if leaf missing colors are different in the same star?

Suppose two uncolored edges share a Vizing chain

Vizing fan: The fan structure allows a **rotation** operation

What if leaf missing colors are different in the same star?

Suppose two uncolored edges share a Vizing chain

Vizing fan: The fan structure allows a **rotation** operation

What if leaf **missing colors are different** in the same star?

What if leaf **missing colors are different** in the same star?

What if leaf missing colors are different in the same star?

Suppose two uncolored edges share a Vizing chain

Key idea:

What if leaf **missing colors are different** in the same star?

Suppose two uncolored edges share a Vizing chain

Key idea: Perform both rotations except for the last edge

What if leaf **missing colors are different** in the same star?

Suppose two uncolored edges share a Vizing chain

Key idea:

Perform both rotations except for the last edge The two uncolored edges make a new u-fan Thus, reducing towards the **bipartite** case

Conclusion

- Open question: Near-linear runtime?
- Other questions: Dynamic? Parallel? lacksquare

• Main result: $(\Delta + 1)$ -edge coloring faster than the classical $mn^{1/2}$ bound

Conclusion

Open question: Near linear runtime? Solved by more recent [ABBCSZ'24]

Other questions: Dynamic? Parallel? \bullet

• Main result: $(\Delta + 1)$ -edge coloring faster than the classical $mn^{1/2}$ bound

