Dynamic Edge Coloring with Improved Approximation

Ran Duan, Haoqing He, **Tianyi Zhang** *Tsinghua University*

<u>Definition</u>: Edge Coloring

Undirected **simple** graph, max vertex degree = Δ

 Edge coloring: any coloring of edges, s.t. any two edges incident on the same vertex have different colors

• Number of colors: NP-hard to decide if Δ -colorable, but $\Delta + 1$ coloring can be computed efficiently [Viz'64]

Definition: Dynamic Edge Coloring

Data structure

Maintain an edge coloring using a "small" number of colors

Update operation

- Input: insertion / deletion of an edge
- Output: reassignment of colors

A short history

Assume is a fixed value

Reference	Number of colors	Update time
[Viz'64]	$\Delta + 1$	$\tilde{O}(n)$
[BM'17]	$O(\Delta)$	$ ilde{O}(\sqrt{\Delta})$
[BCHN'18]	$2\Delta - 1$	$O(\log \Delta)$
[CHLPU'18]	$ \Delta + c $ $ c \le \Delta/3 $	$\Omega(\frac{\Delta}{c}\log n)$
New	$(1 + \epsilon)\Delta$ $\Delta \ge \Omega(\log^2 n/\epsilon^2)$	$O(\log^8 n/\epsilon^4)$ rand. & amortized

A short history

Assume is a fixed value

Reference	Number of colors	Update time
[Viz'64]	$\Delta + 1$	$\tilde{O}(n)$
[BM'17]	$O(\Delta)$	$ ilde{O}(\sqrt{\Delta})$
[BCHN'18]	$2\Delta - 1$	$O(\log \Delta)$
[CHLPU'18]	$ \Delta + c $ $ c \le \Delta/3 $	$\Omega(\frac{\Delta}{c}\log n)$
New	$(1 + \epsilon)\Delta$ $\Delta \ge \Omega(\log^2 n/\epsilon^2)$	$O(\log^8 n/\epsilon^4)$ rand. & amortized

This is a worstcase "lower bound"

A newly inserted edge (u, v)

Two bottlenecks in maintaining a $\Delta + 1$ coloring

- Maximal chain: $\tilde{O}(\Delta)$
- Alternating path: $\tilde{O}(L)$, L being the length of alt-path
- Total time: $\tilde{O}(\Delta + L) = \tilde{O}(n)$
- How to improve these two terms using $(1 + \epsilon)\Delta$ colors?

<u>Definition</u>: A color subset is called a **palette**, if no vertex contains the entire palette in its neighborhood

Subset {red, green, blue} makes a palette for this partially colored graph

Lemma: For any partially $(1 + \epsilon)\Delta$ colored graph, a random color subset of size $O(\log n/\epsilon)$ makes a **palette**, w.h.p.

- Run Vizing's algorithm only using colors from a palette
- Maximal chains have length at most $O(\log n/\epsilon)$
- How about alternating paths?

Algorithm: If the alternating path is long, then translate the uncolored edge to a **random position** on the path, and reapply Vizing's algorithm

Observation: Most positions on this alternating path are good for applying Vizing's algorithm

<u>Idea</u>: Translate multiple times, until alt-path length is $\leq h$

Example: Translate twice and we have $\tilde{O}(n^{1/3})$ update time

<u>Idea</u>: Translate multiple times, until alt-path length is $\leq h$

Example: Translate twice and we have $\tilde{O}(n^{1/3})$ update time

<u>Idea</u>: Translate multiple times, until alt-path length is $\leq h$

Example: Translate twice and we have $\tilde{O}(n^{1/3})$ update time

<u>Idea</u>: Translate multiple times, until alt-path length is $\leq h$

Example: Translate k-times and we have $\tilde{O}(n^{\frac{1}{k+1}})$ update time

Assume after **i-th** translation, the uncolored edge is uniformly distributed among an edge set of size at least $\left(\epsilon^2/\log^2 n \right)^{i-1} \cdot n^{\frac{i}{k+1}}$

<u>Idea</u>: Translate multiple times, until alt-path length is $\leq h$

Example: Translate k-times and we have $\tilde{O}(n^{\frac{1}{k+1}})$ update time

Assume after **i-th** translation, the uncolored edge is uniformly distributed among an edge set of size at least $\left(\frac{e^2}{\log^2 n} \right)^{i-1} \cdot n^{\frac{i}{k+1}}$

At least $\Omega(\epsilon^2/\log^2 n)$ fraction of alt-paths in the next round have the **same type**

<u>Idea</u>: Translate multiple times, until alt-path length is $\leq h$

Example: Translate k-times and we have $\tilde{O}(n^{\frac{1}{k+1}})$ update time

Assume after **i-th** translation, the uncolored edge is uniformly distributed among an edge set of size at least $(\epsilon^2/\log^2 n)^{i-1} \cdot n^{\frac{i}{k+1}}$

At least $\Omega(\epsilon^2/\log^2 n)$ fraction of alt-paths in the next round have the **same type**

Then after (i+1)-th translation, the uncolored edge is uniformly distributed among an edge set of size at least $(\epsilon^2/\log^2 n)^i \cdot n^{\frac{i+1}{k+1}}$

Bottleneck: Only take one type of alt-path that accounts for a fraction of $\Omega(\epsilon^2/\log^2 n)$

Refinement: Consider every type of alt-paths that accounts for a fraction of $\Omega(\epsilon^2/\log^3 n)$

Each node $p \in \mathcal{T}$ is associated with two fields:

- a probability mass $\mu[p] \in [0,1]$
- a set E[p] of vertex-disjoint edges

Assume with prob. $\mu[p]$, uncolored edge is **uniformly distributed** among E[p]

Each node $p \in \mathcal{T}$ is associated with two fields:

- a probability mass $\mu[p] \in [0,1]$
- a set E[p] of vertex-disjoint edges

Assume with prob. $\mu[p]$, uncolored edge is **uniformly distributed** among E[p]

Each node $p \in \mathcal{T}$ is associated with two fields:

- a probability mass $\mu[p] \in [0,1]$
- a set E[p] of vertex-disjoint edges

Each node $p \in \mathcal{T}$ is associated with two fields:

- a probability mass $\mu[p] \in [0,1]$
- a set E[p] of vertex-disjoint edges

Each node $p \in \mathcal{T}$ is associated with two fields:

- a probability mass $\mu[p] \in [0,1]$
- a set E[p] of vertex-disjoint edges

If #blue-red alt-paths is larger than $\epsilon^2/\log^3 n \cdot |E[p]|$ then, |E[child[blue, red]]| $\geq h \cdot \epsilon^2/2\log^3 n \cdot |E[p]|$

Each node $p \in \mathcal{T}$ is associated with two fields:

- a probability mass $\mu[p] \in [0,1]$
- a set E[p] of vertex-disjoint edges

If #blue-red alt-paths is smaller than $\epsilon^2/\log^3 n \cdot |E[p]|$ then, $\sum \mu \left[\text{child[blue, red]} \right]$ $\leq \mu[p]/\log n$


```
If #alt-paths of a certain type is larger than  \epsilon^2/\log^3 n \cdot |E[p]|  then,  |E[\text{child[this type]}]|   \geq h \cdot \epsilon^2/2\log^3 n \cdot |E[p]|
```

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than *h* before the last iteration


```
If #alt-paths of a certain type is larger than  \epsilon^2/\log^3 n \cdot |E[p]|  then,  |E[\text{child[this type]}]|   \geq h \cdot \epsilon^2/2\log^3 n \cdot |E[p]|
```

If #alt-paths of a certain type is smaller than $\epsilon^2/\log^3 n \cdot |E[p]|$ then, $\sum \mu [\text{child[this type]}]$ $\leq \mu[p]/\log n$

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than *h* before the last iteration

If #alt-paths of a certain type is larger than $\frac{a^2}{1000} = \frac{1}{1000} = \frac{1}{1$

$$\epsilon^2/\log^3 n \cdot |E[p]|$$

then,

E[child[this type]]

$$\geq h \cdot \epsilon^2 / 2 \log^3 n \cdot |E[p]|$$

If #alt-paths of a certain type is smaller than

$$\epsilon^2/\log^3 n \cdot |E[p]|$$

then,

$$\sum \mu$$
 [child[this type]]

$$\leq \mu[p]/\log n$$

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than *h* before the last iteration

Setting $h \leftarrow 2 \log^3 n/\epsilon^2$ Then |E[any leaf]| $\geq (h \cdot \epsilon^2/\log^3 n)^L \geq n/2$

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than *h* before the last iteration

In the end, with **constant** prob., the uncolored edge is **uniformly** distributed among **n/2 vertex-disjoint** edges

Setting $h \leftarrow 2 \log^3 n/\epsilon^2$ Then |E[any leaf]| $\geq (h \cdot \epsilon^2/\log^3 n)^L \geq n/2$

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than *h* before the last iteration

Consequently, in the last iteration, most alt-paths have **poly-log** length

In the end, with **constant** prob., the uncolored edge is **uniformly** distributed among **n/2 vertex-disjoint** edges

Setting $h \leftarrow 2 \log^3 n/\epsilon^2$ Then |E[any leaf]| $\geq (h \cdot \epsilon^2/\log^3 n)^L \geq n/2$

Thank you!