Dynamic Edge Coloring with Improved Approximation

Ran Duan, Haoqing He, Tianyi Zhang

Tsinghua University

Definition: Edge Coloring

Undirected simple graph, max vertex degree $=\Delta$

- Edge coloring: any coloring of edges, s.t. any two edges incident on the same vertex have different colors

- Number of colors: NP-hard to decide if Δ-colorable, but $\Delta+1$ coloring can be computed efficiently [Viz'64]

Definition: Dynamic Edge Coloring

Data structure

- Maintain an edge coloring using a "small" number of colors

Update operation

- Input: insertion / deletion of an edge
- Output: reassignment of colors

A short history

Assume is a fixed value	$\left[\mathrm{Viz}^{\prime} 64\right]$	$\Delta+1$	$\tilde{O}(n)$
$\left[\right.$ BM'17] $^{\prime}$	$O(\Delta)$	$\tilde{O}(\sqrt{\Delta})$	
[BCHN'18]	$2 \Delta-1$	$O(\log \Delta)$	
	[CHLPU'18]	$\Delta+c$ $c \leq \Delta / 3$	$\Omega\left(\frac{\Delta}{c} \log n\right)$
	New	$(1+\epsilon) \Delta$ $\Delta \geq \Omega\left(\log ^{2} n / \epsilon^{2}\right)$	$O\left(\log ^{8} n / \epsilon^{4}\right)$ rand. \& amortized

A short history

Assume is a fixed value	$\left[\right.$ Viz'$\left.^{\prime} 64\right]$	$\Delta+1$	$\tilde{O}(n)$
[BM'17]	$O(\Delta)$	$\tilde{O}(\sqrt{\Delta})$	
	[BCHN'18]	$2 \Delta-1$	$O(\log \Delta)$
	[CHLPU'18]	$\Delta+c$ $c \leq \Delta / 3$	$\Omega\left(\frac{\Delta}{c} \log n\right)$
	New	$(1+\epsilon) \Delta$ $\Delta \geq \Omega\left(\log ^{2} n / \epsilon^{2}\right)$	$O\left(\log ^{8} n / \epsilon^{4}\right)$ rand. \& amortized

This is a worstcase "lower bound"

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

blue is missing

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

blue is missing

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A newly inserted edge (u, v)

Idea: Find a maximal chain of neighbors

A review of [Viz'64]

A review of [Viz'64]

Two bottlenecks in maintaining a $\Delta+1$ coloring

- Maximal chain: $\tilde{O}(\Delta)$
- Alternating path: $\tilde{O}(L), L$ being the length of alt-path
- Total time: $\tilde{O}(\Delta+L)=\tilde{O}(n)$
- How to improve these two terms using $(1+\epsilon) \Delta$ colors?

Definition: A color subset is called a palette, if no vertex contains the entire palette in its neighborhood

Subset \{red, green, blue\} makes a palette for this partially colored graph

Lemma: For any partially $(1+\epsilon) \Delta$ colored graph, a random color subset of size $O(\log n / \epsilon)$ makes a palette, w.h.p.

- Run Vizing's algorithm only using colors from a palette
- Maximal chains have length at most $O(\log n / \epsilon)$
- How about alternating paths?

An $\tilde{O}(\sqrt{n})$ update time algorithm

Algorithm: If the alternating path is long, then translate the uncolored edge to a random position on the path, and reapply Vizing's algorithm

Observation: Most positions on this alternating path are good for applying Vizing's algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

An $\tilde{O}(\sqrt{n})$ update time algorithm

An $\tilde{O}(\sqrt{n})$ update time algorithm

An $\tilde{O}(\sqrt{n})$ update time algorithm

An $\tilde{O}(\sqrt{n})$ update time algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

An $\tilde{O}(\sqrt{n})$ update time algorithm

An $\tilde{o}(\sqrt{n})$ update time algorithm

At most $O\left(\log ^{2} n / \epsilon^{2}\right)$ different types of alternating paths

At least $\Omega\left(\epsilon^{2} / \log ^{2} n\right)$ fraction of them have same type

An $\tilde{O}(\sqrt{n})$ update time algorithm

At least $\Omega\left(\epsilon^{2} / \log ^{2} n\right)$ fraction of them have same type

Same type altpaths are vertexdisjoint, so most of them have length less than $O\left(\sqrt{n} \log ^{2} n / \epsilon^{2}\right)$

Improving to sub-poly update time

Idea: Translate multiple times, until alt-path length is $\leq h$
Example: Translate twice and we have $\tilde{O}\left(n^{1 / 3}\right)$ update time

Improving to sub-poly update time

Idea: Translate multiple times, until alt-path length is $\leq h$
Example: Translate twice and we have $\tilde{O}\left(n^{1 / 3}\right)$ update time

Improving to sub-poly update time

Idea: Translate multiple times, until alt-path length is $\leq h$
Example: Translate twice and we have $\tilde{O}\left(n^{1 / 3}\right)$ update time

Improving to sub-poly update time

Idea: Translate multiple times, until alt-path length is $\leq h$
Example: Translate k-times and we have $\tilde{O}\left(n^{\frac{1}{k+1}}\right)$ update time

Assume after i-th translation, the uncolored edge is uniformly distributed among an edge set of size at least $\left(\epsilon^{2} / \log ^{2} n\right)^{i-1} \cdot n^{\frac{i}{k+1}}$

Improving to sub-poly update time

Idea: Translate multiple times, until alt-path length is $\leq h$
Example: Translate k-times and we have $\tilde{O}\left(n^{\frac{1}{k+1}}\right)$ update time

Assume after i-th translation, the uncolored edge is uniformly distributed among an edge set of size at least $\left(\epsilon^{2} / \log ^{2} n\right)^{i-1} \cdot n^{\frac{i}{k+1}}$

At least $\Omega\left(\epsilon^{2} / \log ^{2} n\right)$ fraction of alt-paths in the next round have the same type

Improving to sub-poly update time

Idea: Translate multiple times, until alt-path length is $\leq h$
Example: Translate k-times and we have $\tilde{O}\left(n^{\frac{1}{k+1}}\right)$ update time

Assume after i-th translation, the uncolored edge is uniformly distributed among an edge set of size at least $\left(\epsilon^{2} / \log ^{2} n\right)^{i-1} \cdot n^{\frac{i}{k+1}}$

At least $\Omega\left(\epsilon^{2} / \log ^{2} n\right)$ fraction of alt-paths in the next round have the same type

Then after ($\mathbf{i}+1$)-th translation, the uncolored edge is uniformly distributed among an edge set of size at least $\left(\epsilon^{2} / \log ^{2} n\right)^{i} \cdot n^{\frac{i+1}{k+1}}$

Refining the update time analysis

Bottleneck: Only take one type of alt-path that accounts for a fraction of $\Omega\left(\epsilon^{2} / \log ^{2} n\right)$

Refinement: Consider every type of alt-paths that accounts for a fraction of $\Omega\left(\epsilon^{2} / \log ^{3} n\right)$

Model the algorithm as a tree \mathscr{T}
Each node $p \in \mathscr{T}$ is associated with two fields:

- a probability mass $\mu[p] \in[0,1]$
- a set $E[p]$ of vertex-disjoint edges

Assume with prob. $\mu[p]$, uncolored edge is uniformly distributed among $E[p]$

Model the algorithm as a tree \mathscr{T}
Each node $p \in \mathscr{T}$ is associated with two fields:

- a probability mass $\mu[p] \in[0,1]$
- a set $E[p]$ of vertex-disjoint edges

Assume with prob. $\mu[p]$, uncolored edge is uniformly distributed among $E[p]$

Model the algorithm as a tree \mathscr{T}
Each node $p \in \mathscr{T}$ is associated with two fields:

- a probability mass $\mu[p] \in[0,1]$
- a set $E[p]$ of vertex-disjoint edges

child[blue, red]

Assume with prob. $\mu[p]$, uncolored edge is uniformly distributed among $E[p]$

Model the algorithm as a tree \mathscr{T}
Each node $p \in \mathscr{T}$ is associated with two fields:

- a probability mass $\mu[p] \in[0,1]$
- a set $E[p]$ of vertex-disjoint edges

child[blue, red]
$E[$ child[blue, red] $]=$ red edges
$\mu[$ child[blue, red $]=\mu[p] \cdot \frac{\text { \#alt-blue-red }}{|E[p]|}$

Model the algorithm as a tree \mathscr{T}
Each node $p \in \mathscr{T}$ is associated with two fields:

- a probability mass $\mu[p] \in[0,1]$
- a set $E[p]$ of vertex-disjoint edges

$E[$ child[blue, red] $]=$ red edges
$\mu[$ child[blue, red $]=\mu[p] \cdot \frac{\text { \#alt-blue-red }}{|E[p]|}$

child[blue, red]

If \#blue-red alt-paths is larger than

$$
\epsilon^{2} / \log ^{3} n \cdot|E[p]|
$$

then,
| E [child[blue, red]] |
$\geq h \cdot \epsilon^{2} / 2 \log ^{3} n \cdot|E[p]|$

Model the algorithm as a tree \mathscr{T}
Each node $p \in \mathscr{T}$ is associated with two fields:

- a probability mass $\mu[p] \in[0,1]$
- a set $E[p]$ of vertex-disjoint edges

$$
\begin{aligned}
& E[\text { child[blue, red }] \text { = red edges } \\
& \mu[\text { child[blue, red }]=\mu[p] \cdot \frac{\text { \#alt-blue-red }}{|E[p]|}
\end{aligned}
$$

child[blue, red]

If \#blue-red alt-paths is smaller than

$$
\epsilon^{2} / \log ^{3} n \cdot|E[p]|
$$

then,

$$
\begin{gathered}
\left.\sum \mu \text { [child[blue, red }\right] \text {] } \\
\leq \mu[p] / \log n
\end{gathered}
$$

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration


```
If #alt-paths of a certain type
is larger than
    \epsilon}\mp@subsup{\epsilon}{}{2}/\mp@subsup{\operatorname{log}}{}{3}n\cdot|E[p]
then,
    | E[child[this type]] |
    \geqh\cdot\epsilon}\mp@subsup{\epsilon}{}{2}/2\mp@subsup{\operatorname{log}}{}{3}n\cdot|E[p]
```


Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

If \#alt-paths of a certain type is larger than

```
        \epsilon}\mp@subsup{\epsilon}{}{2}/\mp@subsup{\operatorname{log}}{}{3}n\cdot|E[p]
```

then,
| E[child[this type]] |
$\geq h \cdot \epsilon^{2} / 2 \log ^{3} n \cdot|E[p]|$

If \#alt-paths of a certain type is smaller than
$\epsilon^{2} / \log ^{3} n \cdot|E[p]|$
then,
$\sum \mu$ [child[this type]]
$\leq \mu[p] / \log n$

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

If \#alt-paths of a certain type is larger than

```
        \epsilon}\mp@subsup{\mp@code{2}}{2}{\prime\mp@subsup{log}{3}{3}n\cdot|E[p]|
```

then,
| E[child[this type]] |
$\geq h \cdot \epsilon^{2} / 2 \log ^{3} n \cdot|E[p]|$

If \#alt-paths of a certain type is smaller than
$\epsilon^{2} / \log ^{3} n \cdot|E[p]|$
then,
$\sum \mu$ [child[this type]]
$\leq \mu[p] / \log n$

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Setting $h \leftarrow 2 \log ^{3} n / \epsilon^{2}$
Then $\mid E$ [any leaf] \mid
$\geq\left(h \cdot \epsilon^{2} / \log ^{3} n\right)^{L} \geq n / 2$

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

In the end, with constant prob., the uncolored edge is uniformly distributed among $\mathrm{n} / 2$ vertex-disjoint edges

Setting $h \leftarrow 2 \log ^{3} n / \epsilon^{2}$
Then $\mid E$ [any leaf] \mid
$\geq\left(h \cdot \epsilon^{2} / \log ^{3} n\right)^{L} \geq n / 2$

Refining the update time analysis

For simplicity, assume Vizing's algorithm never finds an alternating path shorter than h before the last iteration

Consequently, in the last iteration, most alt-paths have poly-log length

In the end, with constant prob., the uncolored edge is uniformly distributed among $\mathrm{n} / 2$ vertex-disjoint edges

Setting $h \leftarrow 2 \log ^{3} n / \epsilon^{2}$
Then $\mid E$ [any leaf] \mid
$\geq\left(h \cdot \epsilon^{2} / \log ^{3} n\right)^{L} \geq n / 2$

Thank you!

