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Definition: Edge Coloring

Undirected simple graph, max vertex degree = A

* Edge coloring: any coloring of edges, s.t. any two edges
Incident on the same vertex have different colors

e Number of colors: NP-hard to decide if A-colorable,
but A + 1 coloring can be computed efficiently [Viz’64]



Definition: Dynamic Edge Coloring

Data structure

* Maintain an edge coloring using a “small” number of
colors

Update operation
* |Input: insertion / deletion of an edge

 Output: reassignment of colors
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Two bottlenecks in maintaining a A + 1 coloring

e Maximal chain: O(A)

e Alternating path: O(L), L being the length of alt-path
e Total time: O(A + L) = O(n)

e How to improve these two terms using (1 + ¢)A colors?



Definition: A color subset is called a palette, if no vertex
contains the entire palette in its neighborhood

Subset {red, green, blue}
makes a palette forthis /N _.--°"

partially colored graph  __--"" :

Lemma: For any partially (1 + ¢)A colored graph, a random
color subset of size O(log n/e¢) makes a palette, w.h.p.

* Run Vizing’s algorithm only using colors from a palette
 Maximal chains have length at most O(log n/¢)

* How about alternating paths?



An O(/n) update time algorithm

Algorithm: If the alternating path is long, then translate the
uncolored edge to a random position on the path, and
reapply Vizing’s algorithm

Observation: Most positions on this alternating path are
good for applying Vizing’s algorithm
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Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate k-times and we have O(nk%) update time

Assume after i-th translation, the
uncolored edge is uniformly
distributed among an edge set of

size at least (ez/logzn)i_l T

At least Q(e?/log? n)
fraction of alt-paths in the next round
have the same type

Then after (i+1)-th translation, the
uncolored edge is uniformly
distributed among an edge set of

size at least <€2/10g2n)l . nli:l—i__ll



Refining the update time analysis

Bottleneck: Only take one type of alt-path that accounts for
a fraction of Q(e?/log?n)

Refinement: Consider every type of alt-paths that accounts
for a fraction of Q(e*/log’ n)
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For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

L=logn—-1
levels

M [root] =1

E[root] = {ne%

|7 total mass of
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g

Consequently, in the last
iteration, most alt-paths
have poly-log length

In the end, with constant
prob., the uncolored edge is
uniformly distributed among
n/2 vertex-disjoint edges

Setting h « 2log’n/e?
Then | E| ] |
> (h-€*/log*n)" > n/2



Thank you!



