Dynamic Edge Coloring with
Improved Approximation

Ran Duan, Haoqing He, Tianyi Zhang
Isinghua University

Definition: Edge Coloring

Undirected simple graph, max vertex degree = A

* Edge coloring: any coloring of edges, s.t. any two edges
Incident on the same vertex have different colors

e Number of colors: NP-hard to decide if A-colorable,
but A + 1 coloring can be computed efficiently [Viz’64]

Definition: Dynamic Edge Coloring

Data structure

* Maintain an edge coloring using a “small” number of
colors

Update operation
* |Input: insertion / deletion of an edge

 Output: reassignment of colors

A short history

Reference Number of colors Update time

Assume -

is a fixed A+ 1 O(n)

alue -

e [BM17] O(A) O(/A)

[BCHN’18] 2A — 1 O(log A)
A+c A

CHLPU’18] Q(—logn
[c < A/3 (— logn)

(1+e)A Oog®n/e*
New A > Q(log®n/e®) rand. & amortized

A short history

Reference Number of colors Update time
o a fixed A+1 O(n)
e BT 0(a) O(/B)
[BCHN’18] 2A — 1 O(log A)
A+ ¢ This is a worst-
[CHLPU’18] c < AJ3 case “lower

bound”

(1+e)A Oog®n/e*
New A > Q(log®n/e®) rand. & amortized

A review of [Viz’64]

A newly inserted edge (u, V) u

A review of [Viz’64]

A newly inserted edge (u, V) u

A review of [Viz’64]

A newly inserted edge (u, V) u

blue is missing

A review of [Viz’64]

A newly inserted edge (u, V) u

blue is missing

A review of [Viz’64]

A newly inserted edge (u, V) u

blue is missing

A review of [Viz’64]

A newly inserted edge (u, V) u

blue is missing

A review of [Viz’64]

A newly inserted edge (u, V) u

blue is missing

A review of [Viz’64]

A newly inserted edge (u, V) u

green is
missing

blue is missing

A review of [Viz’64]

A newly inserted edge (u, V) u

green is
missing

blue is missing

A review of [Viz’64]

u

v e vd\ qreen is

Vi V3 V4 missing

A review of [Viz’64]

u

assume
IS missing at u

green is
Vi V3 V4 missing

A review of [Viz’64]

u

assume
IS missing at u

green is
Vi V3 V4 missing

find the green-
alternating path

A review of [Viz’64]

u

assume
IS missing at u

=V, @ green is
Vi V3 V4 missing
find the green-
alternating path
Case I:
the green-
alt-path does not
end at Vq
|
°

A review of [Viz’64]

u

assume
IS missing at u

=V, green is
Vi V3 V4 missing
find the green-
alternating path
Case I:
the green-
alt-path does not
end at Vq
®
‘ L 4

A review of [Viz’64]

u

assume
IS missing at u
=V, 125 green is
Vi V3 V4 missing
find the green-
alternating path
Case l:
the green-
alt-path does not
end at Vq

L 4
L 4
L 4
L 4
L4
L 4

A review of [Viz’64]

u

Case ll:

the green-
alt-path does end
at Vl

assume

V3 V4

find the green-
alternating path

IS missing at u

green is
missing

A review of [Viz’64]

Case ll:

the green-
alt-path does end
at Vl

assume

V3 V4

find the green-
alternating path

IS missing at u

green is
missing

A review of [Viz’64]

u

assume
IS missing at u
V=1, Vi Vo @ gr_eer_1 IS
V3 V4 missing
find the green-
Case ll: alternating path
the green-

alt-path does end
at Vl

A review of [Viz’64]

u

assume
IS missing at u

green WAS

V — VO Vl - -
V3 V4 missing
find the green-
Case ll: alternating path
the green-

alt-path does end
at Vl

A review of [Viz’64]

Two bottlenecks in maintaining a A + 1 coloring

e Maximal chain: O(A)

e Alternating path: O(L), L being the length of alt-path
e Total time: O(A + L) = O(n)

e How to improve these two terms using (1 + ¢)A colors?

Definition: A color subset is called a palette, if no vertex
contains the entire palette in its neighborhood

Subset {red, green, blue}
makes a palette forthis /N _.--°"

partially colored graph __--"" :

Lemma: For any partially (1 + ¢)A colored graph, a random
color subset of size O(log n/e¢) makes a palette, w.h.p.

* Run Vizing’s algorithm only using colors from a palette
 Maximal chains have length at most O(log n/¢)

* How about alternating paths?

An O(/n) update time algorithm

Algorithm: If the alternating path is long, then translate the
uncolored edge to a random position on the path, and
reapply Vizing’s algorithm

Observation: Most positions on this alternating path are
good for applying Vizing’s algorithm

An O(/n) update time algorithm

u

assume
IS missing at u
s 12) green is
V=1, Vq V3 V4 missing
length I

An O(/n) update time algorithm

u

assume
IS missing at u

V) @ green IS

V3 Vy missing

1

S

<
ek

An O(/n) update time algorithm

u

assume
IS missing at u

green is
Vy missing

, choose a
: rand. position,
: and translate

the uncolored

An O(/n) update time algorithm

u

assume
IS missing at u

green is
V4 missing

, choose a

: rand. position,
and translate
the uncolored

l reapply Vizing’s
algorithm

An O(/n) update time algorithm

u

assume
IS missing at u

green is
Vy missing

, choose a

: rand. position,
and translate
the uncolored

l reapply Vizing’s
algorithm

An O(/n) update time algorithm

An O(/n) update time algorithm

An O(/n) update time algorithm

An O(/n) update time algorithm

An O(/n) update time algorithm

An O(/n) update time algorithm

At most O(log” n/e?)
different types of
alternating paths

An O(/n) update time algorithm

u

At most O(log” n/e?)
different types of
alternating paths

V=, Vq & At least Q(¢*/log® n)
fraction of them
, have same type
ength | e _—
= n

An O(/n) update time algorithm

u

At most O(log” n/e?)
different types of
alternating paths

At least Q(e?/log” n)
fraction of them
have same type

Same type alt-

— paths are vertex-
disjoint, so most
of them have

— length less than
O(/nlog®n/e?)

Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate twice and we have é(nl/ %) update time

7 length
ii o 13
~ 0 At least ~ n?/3

~— T ——_ — —_— vertex-disjoint
edges in total

Iength

Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate twice and we have 5(1@1/ %) update time

7 length
ii ~ 173 4|
~ 0 At least ~ n??
— vertex-disjoint
/ /\é\/\/\T\ edges in total

Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate twice and we have 5(1@1/ %) update time

7 | length |
~ 113
~ 0 At least ~ n*/>
— vertex-disjoint
: /\T\ edges in total
=n'? | ﬁ\)/\ —
Most alt-paths finishes
/s\/\ before n'” steps

Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate k-times and we have O(nk%) update time

Assume after i-th translation, the
\ e uncolored edge is uniformly

- - distributed among an edge set of

/ o i —1 i
| —_ |
| — |
| T I
length \ /
h = nk-l-;l \ \ \ /

\—_—-—

Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate k-times and we have O(nk%) update time

Assume after i-th translation, the
uncolored edge is uniformly
distributed among an edge set of

size at least (ez/logzn)i_l T

At least Q(e?/log? n)
fraction of alt-paths in the next round
have the same type

Improving to sub-poly update time

ldea: Translate multiple times, until alt-path length is < &

Example: Translate k-times and we have O(nk%) update time

Assume after i-th translation, the
uncolored edge is uniformly
distributed among an edge set of

size at least (ez/logzn)i_l T

At least Q(e?/log? n)
fraction of alt-paths in the next round
have the same type

Then after (i+1)-th translation, the
uncolored edge is uniformly
distributed among an edge set of

size at least <€2/10g2n)l . nli:l—i__ll

Refining the update time analysis

Bottleneck: Only take one type of alt-path that accounts for
a fraction of Q(e?/log?n)

Refinement: Consider every type of alt-paths that accounts
for a fraction of Q(e*/log’ n)

Model the algorithm as a tree &
Each node p € is associated with two fields:
e a probability mass u[p] € [0,1]

e aset E|[p] of vertex-disjoint edges

o P
g - ®
/ - —_— \
[P |
| |
Elp] | —
| - \ /
\ /
\ /

\———"_’

Assume with prob. #[p],
uncolored edge is uniformly
distributed among E[p]

Model the algorithm as a tree &
Each node p € is associated with two fields:
e a probability mass u[p] € [0,1]

e aset E|[p] of vertex-disjoint edges

Assume with prob. #[p],
uncolored edge is uniformly
distributed among E[p]

Model the algorithm as a tree &
Each node p € is associated with two fields:
e a probability mass u[p] € [0,1]

e aset E|[p] of vertex-disjoint edges

child[blue, red]

Assume with prob. #[p],
uncolored edge is uniformly
distributed among E[p]

Model the algorithm as a tree &
Each node p € is associated with two fields:
e a probability mass u[p] € [0,1]

e aset E|[p] of vertex-disjoint edges

! \ / child[blue, red]

T ——— —
~ — — —

E|child[blue, red]] = red edges

#alt-blue-red

U [childlblue, red]] = p[p] - El)]]

Model the algorithm as a tree &
Each node p € is associated with two fields:
e a probability mass u[p] € [0,1]

e aset E|[p] of vertex-disjoint edges

- = \ A
-~ \
(N hild[blue, red]
/ child[blue, re
i \ ,
/ \ /
A , l \ / If #blue-red alt-paths is
¢ /’ larger than
e el __-" e?/log’ n - | E[p]|
Elchild[blue, red]] = red edges then, | Efonitaioie, rec] |
#alt-blue-red o

A [child[blue, red]] = u[p] - > h-e*2log’n - |E[p]|

| Elpl|

Model the algorithm as a tree &
Each node p € is associated with two fields:
e a probability mass u[p] € [0,1]

e aset E|[p] of vertex-disjoint edges

- - \ A
-~ \
/ . hild[bl d]
/ child[blue, re

i \ ,

4 \ /
A , l \ / If #blue-red alt-paths is
\ ,/ smaller than
CeSmonoEE e/log* n - | E[pl|
Elchild[blue, red]] = red edges then,

Z U [child[blue, red]]

#alt-blue-red < u[pl/logn

U [childlblue, red]] = p[p] - El)]]

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

P

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

P

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

P

If #alt-paths of a certain type If #alt-paths of a certain type
is larger than is smaller than

e*/log’n - | E[p]| e*/log’n - | E[p]|
then, then, -

| E[child[this type]] | Z‘,//t[chlld[thIS typel]

> h-e%/2log’n - | E[p]| < ulpl/logn

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

P

|7 total mass I mass _l
1

> (1 - 1—),“[1?] < ulpl/logn
ogn
If #alt-paths of a certain type If #alt-paths of a certain type
is larger than is smaller than
e?/log*n - | E[p| e*/log’n - | E[p]|
then, then, -
| E[child[this type]] | Z//t[ch"d[thls type]]

> h-e%/2log’n - | E[p]| < ulpl/logn

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

U root] = 1 root

E[root] = {ne%

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

U root] = 1 root

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

U root] = 1 root

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

U root] = 1 root

L=logn—-1 / \ / \
levels | \

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

U root] = 1 root

L=logn—-1 / \ / \
levels | \

|7 total mass of
1

> (1 ———)"=Q()
logn

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

L=logn—-1
levels

U root] = 1 root

Setting h « 2log’n/e?
Then | E[]|

|7 total mass of 4| > (h . €2/log’ n)L >n/2

1
>(1-—)F=Q)
logn

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

L=logn—-1
levels

M [root] =1

E[root] = {ne%

|7 total mass of

> (1 -——)"=Q()
g

In the end, with constant
prob., the uncolored edge is
uniformly distributed among
n/2 vertex-disjoint edges

Setting h « 2log’n/e?
Then | E|] |
> (h-€*/log*n)" > n/2

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

L=logn—-1
levels

M [root] =1

E[root] = {ne%

|7 total mass of

> (1 -——)"=Q()
g

Consequently, in the last
iteration, most alt-paths
have poly-log length

In the end, with constant
prob., the uncolored edge is
uniformly distributed among
n/2 vertex-disjoint edges

Setting h « 2log’n/e?
Then | E|] |
> (h-€*/log*n)" > n/2

Thank you!

