
Dynamic Edge Coloring with
Improved Approximation

Ran Duan, Haoqing He, Tianyi Zhang

Tsinghua University

Undirected simple graph, max vertex degree

• Edge coloring: any coloring of edges, s.t. any two edges
incident on the same vertex have different colors

• Number of colors: NP-hard to decide if -colorable,
but coloring can be computed efficiently [Viz’64]

Definition: Edge Coloring
= Δ

Δ + 1
Δ

Data structure

• Maintain an edge coloring using a “small” number of
colors

Update operation

• Input: insertion / deletion of an edge

• Output: reassignment of colors

Definition: Dynamic Edge Coloring

A short history

Reference Number of colors Update time

[Viz’64]

[BM’17]

[BCHN’18]

[CHLPU’18]

New rand. & amortized

O(Δ) Õ(Δ)

2Δ − 1 O(log Δ)

Δ + c Ω(
Δ
c

log n)

(1 + ϵ)Δ O(log8 n /ϵ4)
Δ ≥ Ω(log2 n /ϵ2)

c ≤ Δ/3

Δ + 1 Õ(n)
Assume
is a fixed
value

A short history

Reference Number of colors Update time

[Viz’64]

[BM’17]

[BCHN’18]

[CHLPU’18]

New rand. & amortized

O(Δ) Õ(Δ)

2Δ − 1 O(log Δ)

Δ + c Ω(
Δ
c

log n)

(1 + ϵ)Δ O(log8 n /ϵ4)
Δ ≥ Ω(log2 n /ϵ2)

c ≤ Δ/3

Δ + 1 Õ(n)
Assume
is a fixed
value

This is a worst-
case “lower
bound”

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi

…

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi

…

blue is missing

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

……

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

……
vk

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

……
vk

…

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

……
vk

…

green is
missing

A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

vk+1 = vi

……
vk

…

green is
missing

same vertex

A review of [Viz’64]
u

v = v0 green is
missingv1

v2 v3 v4

A review of [Viz’64]
u

v = v0

assume yellow
is missing at u

green is
missingv1

v2 v3 v4

green is
missing

A review of [Viz’64]
u

v = v0

assume yellow
is missing at u

…
…

find the green-yellow
alternating path

v1

v2 v3 v4

green is
missing

A review of [Viz’64]
u

v = v0
v1

v2

assume yellow
is missing at u

…
…

find the green-yellow
alternating path

Case I:

the green-yellow
alt-path does not
end at v1

v3 v4

green is
missing

A review of [Viz’64]
u

v = v0
v1

v2

assume yellow
is missing at u

…
…

find the green-yellow
alternating path

Case I:

the green-yellow
alt-path does not
end at v1

v3 v4

green is
missing

A review of [Viz’64]
u

v = v0
v1

v2

assume yellow
is missing at u

…
…

find the green-yellow
alternating path

Case I:

the green-yellow
alt-path does not
end at v1

v3 v4

green is
missing

A review of [Viz’64]
u

v = v0 v3 v4

assume yellow
is missing at u

find the green-yellow
alternating path

v1 v2

Case II:

the green-yellow
alt-path does end
at v1

green is
missing

A review of [Viz’64]
u

v = v0 v3 v4

assume yellow
is missing at u

find the green-yellow
alternating path

v1 v2

Case II:

the green-yellow
alt-path does end
at v1

green is
missing

A review of [Viz’64]
u

v = v0 v3 v4

assume yellow
is missing at u

find the green-yellow
alternating path

v1 v2

Case II:

the green-yellow
alt-path does end
at v1

A review of [Viz’64]
u

v = v0 v3 v4

assume yellow
is missing at u

find the green-yellow
alternating path

v1 v2

Case II:

the green-yellow
alt-path does end
at v1

green WAS
missing

Two bottlenecks in maintaining a coloring

• Maximal chain:

• Alternating path: , L being the length of alt-path

• Total time:

• How to improve these two terms using colors?

A review of [Viz’64]

Õ(Δ)

Õ(L)

Õ(Δ + L) = Õ(n)

(1 + ϵ)Δ

Δ + 1

Definition: A color subset is called a palette, if no vertex
contains the entire palette in its neighborhood

Subset {red, green, blue}
makes a palette for this
partially colored graph

Lemma: For any partially colored graph, a random
color subset of size makes a palette, w.h.p.

• Run Vizing’s algorithm only using colors from a palette

• Maximal chains have length at most

• How about alternating paths?

(1 + ϵ)Δ
O(log n/ϵ)

O(log n/ϵ)

An update time algorithm

Algorithm: If the alternating path is long, then translate the
uncolored edge to a random position on the path, and
reapply Vizing’s algorithm

Observation: Most positions on this alternating path are
good for applying Vizing’s algorithm

Õ(n)

green is
missing

An update time algorithmÕ(n)
u

v = v0 v1

v2

assume yellow
is missing at u

v3 v4

…
…

length

= n

green is
missing

An update time algorithmÕ(n)
u

v = v0 v1

v2

assume yellow
is missing at u

v3 v4

…
…

length

= n

green is
missing

An update time algorithmÕ(n)
u

v = v0 v1

v2

assume yellow
is missing at u

v3 v4

…
…

length

= n

choose a
rand. position,

and translate
the uncolored

green is
missing

An update time algorithmÕ(n)
u

v = v0 v1

v2

assume yellow
is missing at u

v3 v4

…
…

length

= n

choose a
rand. position,

and translate
the uncolored

reapply Vizing’s
algorithm

green is
missing

An update time algorithmÕ(n)
u

v = v0 v1

v2

assume yellow
is missing at u

v3 v4

…
…

length

= n

choose a
rand. position,

and translate
the uncolored

……

reapply Vizing’s
algorithm

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n

……

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n

……

……

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n ……

……

……

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n ……

……

……

……

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n ……

……

……

……

At most

different types of
alternating paths

O(log2 n /ϵ2)

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n ……

……

……

……

At least

fraction of them
have same type

Ω(ϵ2/log2 n)

At most

different types of
alternating paths

O(log2 n /ϵ2)

An update time algorithmÕ(n)
u

v = v0 v1

v2 v3 v4

…
…

length

= n ……

……

……

……

At least

fraction of them
have same type

Ω(ϵ2/log2 n)

Same type alt-
paths are vertex-
disjoint, so most
of them have
length less than
O(n log2 n /ϵ2)

At most

different types of
alternating paths

O(log2 n /ϵ2)

Improving to sub-poly update time

…
…

length
= n1/3

length
≈ n1/3

At least
vertex-disjoint
edges in total

≈ n2/3

Idea: Translate multiple times, until alt-path length is

Example: Translate twice and we have update time Õ(n1/3)

≤ h

Improving to sub-poly update time

…
…

length
= n1/3

length
≈ n1/3

At least
vertex-disjoint
edges in total

≈ n2/3

Idea: Translate multiple times, until alt-path length is

Example: Translate twice and we have update time Õ(n1/3)

≤ h

Improving to sub-poly update time

…
…

length
= n1/3

length
≈ n1/3

At least
vertex-disjoint
edges in total

≈ n2/3

Most alt-paths finishes
before stepsn1/3

Idea: Translate multiple times, until alt-path length is

Example: Translate twice and we have update time Õ(n1/3)

≤ h

Improving to sub-poly update time

…
…

length
h = n

1
k + 1

Assume after i-th translation, the
uncolored edge is uniformly
distributed among an edge set of
size at least (ϵ2/log2 n)i−1 ⋅ n

i
k + 1

Idea: Translate multiple times, until alt-path length is

Example: Translate k-times and we have update time Õ(n 1
k + 1)

≤ h

Improving to sub-poly update time

…
…

length
h = n

1
k + 1

Assume after i-th translation, the
uncolored edge is uniformly
distributed among an edge set of
size at least (ϵ2/log2 n)i−1 ⋅ n

i
k + 1

At least

fraction of alt-paths in the next round
have the same type

Ω(ϵ2/log2 n)

length
h = n

1
k + 1

Idea: Translate multiple times, until alt-path length is

Example: Translate k-times and we have update time Õ(n 1
k + 1)

≤ h

Improving to sub-poly update time

…
…

length
h = n

1
k + 1

Assume after i-th translation, the
uncolored edge is uniformly
distributed among an edge set of
size at least (ϵ2/log2 n)i−1 ⋅ n

i
k + 1

At least

fraction of alt-paths in the next round
have the same type

Ω(ϵ2/log2 n)

length
h = n

1
k + 1

Then after (i+1)-th translation, the
uncolored edge is uniformly
distributed among an edge set of
size at least (ϵ2/log2 n)i ⋅ n

i + 1
k + 1

Idea: Translate multiple times, until alt-path length is

Example: Translate k-times and we have update time Õ(n 1
k + 1)

≤ h

Refining the update time analysis

Bottleneck: Only take one type of alt-path that accounts for
a fraction of

Refinement: Consider every type of alt-paths that accounts
for a fraction of

Ω(ϵ2/log2 n)

Ω(ϵ2/log3 n)

Model the algorithm as a tree

Each node is associated with two fields:

• a probability mass

• a set of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

Assume with prob. ,
uncolored edge is uniformly
distributed among E[p]

E[p]

p

μ[p]

E[p]

Model the algorithm as a tree

Each node is associated with two fields:

• a probability mass

• a set of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

Assume with prob. ,
uncolored edge is uniformly
distributed among E[p]

E[p]

p

μ[p]

E[p]

Model the algorithm as a tree

Each node is associated with two fields:

• a probability mass

• a set of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

Assume with prob. ,
uncolored edge is uniformly
distributed among E[p]

E[p]

p

…… ……

child[blue, red]

μ[p]

E[p]

Assume with prob. ,
uncolored edge is uniformly
distributed among

μ[p]

Model the algorithm as a tree

Each node is associated with two fields:

• a probability mass

• a set of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

E[p]

E[p]

E[p]

p

…… ……

[child[blue, red]]μ = μ[p] ⋅ #alt-blue-red
|E[p] |

child[blue, red]

E[child[blue, red]] = red edges

Assume with prob. ,
uncolored edge is uniformly
distributed among

μ[p]

Model the algorithm as a tree

Each node is associated with two fields:

• a probability mass

• a set of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

E[p]

E[p]

E[p]

p

…… ……

If #blue-red alt-paths is
larger than

then,

ϵ2/log3 n ⋅ |E[p] |

≥ h ⋅ ϵ2/2 log3 n ⋅ |E[p] |
| E[child[blue, red]] |

[child[blue, red]]μ = μ[p] ⋅ #alt-blue-red
|E[p] |

child[blue, red]

E[child[blue, red]] = red edges

Model the algorithm as a tree

Each node is associated with two fields:

• a probability mass

• a set of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

E[p]

Assume the at some point,
uncolored edge is uniformly
distributed among E[p]

E[p]

p

…… ……

E[child[blue, red]] = red edges

child[blue, red]

[child[blue, red]]μ = μ[p] ⋅ #alt-blue-red
|E[p] |

If #blue-red alt-paths is
smaller than

then,

ϵ2/log3 n ⋅ |E[p] |

∑ [child[blue, red]]μ
≤ μ[p]/log n

p

…

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

p

If #alt-paths of a certain type
is larger than

then,

ϵ2/log3 n ⋅ |E[p] |

≥ h ⋅ ϵ2/2 log3 n ⋅ |E[p] |
| E[child[this type]] |

…

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

p

If #alt-paths of a certain type
is smaller than

then,

ϵ2/log3 n ⋅ |E[p] |

∑ [child[this type]]μ
≤ μ[p]/log n

If #alt-paths of a certain type
is larger than

then,

ϵ2/log3 n ⋅ |E[p] |

≥ h ⋅ ϵ2/2 log3 n ⋅ |E[p] |
| E[child[this type]] |

…

Refining the update time analysis

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

p

…

If #alt-paths of a certain type
is smaller than

then,

ϵ2/log3 n ⋅ |E[p] |

∑ [child[this type]]μ
≤ μ[p]/log n

If #alt-paths of a certain type
is larger than

then,

ϵ2/log3 n ⋅ |E[p] |

≥ h ⋅ ϵ2/2 log3 n ⋅ |E[p] |
| E[child[this type]] |

total mass
≥ (1 −

1
log n

)μ[p]

mass
≤ μ[p]/ log n

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

root

…

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

…
…

…
…

…
…

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

…
…

…
…

…
…

levels
L = log n − 1

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

…
…

…
…

…
…

levels
L = log n − 1

total mass of leaves
≥ (1 −

1
log n

)L = Ω(1)

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

…
…

…
…

…
…

levels
L = log n − 1

total mass of leaves
≥ (1 −

1
log n

)L = Ω(1)

≥ (h ⋅ ϵ2/log3 n)L ≥ n /2
| E[any leaf] |

h ← 2 log3 n /ϵ2Setting
Then

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

…
…

…
…

…
…

levels
L = log n − 1

total mass of leaves
≥ (1 −

1
log n

)L = Ω(1)

≥ (h ⋅ ϵ2/log3 n)L ≥ n /2
| E[any leaf] |

h ← 2 log3 n /ϵ2Setting
Then

In the end, with constant
prob., the uncolored edge is
uniformly distributed among
n/2 vertex-disjoint edges

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

[root] = 1μ
E[root] = {new insertion}

root

…

……

…
…

…
…

…
…

levels
L = log n − 1

total mass of leaves
≥ (1 −

1
log n

)L = Ω(1)

≥ (h ⋅ ϵ2/log3 n)L ≥ n /2
| E[any leaf] |

h ← 2 log3 n /ϵ2Setting
Then

In the end, with constant
prob., the uncolored edge is
uniformly distributed among
n/2 vertex-disjoint edges

For simplicity, assume Vizing’s algorithm never finds an
alternating path shorter than h before the last iteration

Refining the update time analysis

Consequently, in the last
iteration, most alt-paths
have poly-log length

[root] = 1μ
E[root] = {new insertion}

Thank you!

