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Undirected simple graph, max vertex degree 


• Edge coloring: any coloring of edges, s.t. any two edges 
incident on the same vertex have different colors


• Number of colors: NP-hard to decide if    -colorable,            
but            coloring can be computed efficiently [Viz’64]

Definition: Edge Coloring
= Δ

Δ + 1
Δ



Data structure


• Maintain an edge coloring using a “small” number of 
colors


Update operation


• Input: insertion / deletion of an edge


• Output: reassignment of colors

Definition: Dynamic Edge Coloring



A short history

Reference Number of colors Update time

[Viz’64]

[BM’17]

[BCHN’18]

[CHLPU’18]

New rand. & amortized
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This is a worst-
case “lower 
bound”
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A review of [Viz’64]

Idea: Find a maximal chain of neighbors

A newly inserted edge (u, v) u

v

u

……v = v0 vi−1
vi vi+1

…

blue is missing

vk+1 = vi

……
vk

…

green is 
missing

same vertex
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Two bottlenecks in maintaining a           coloring


• Maximal chain: 


• Alternating path:          ,  L being the length of alt-path


• Total time: 


• How to improve these two terms using              colors? 

A review of [Viz’64]

Õ(Δ)

Õ(L)

Õ(Δ + L) = Õ(n)

(1 + ϵ)Δ

Δ + 1



Definition: A color subset is called a palette, if no vertex 
contains the entire palette in its neighborhood

Subset {red, green, blue} 
makes a palette for this 
partially colored graph

Lemma: For any partially              colored graph, a random 
color subset of size                 makes a palette, w.h.p.


• Run Vizing’s algorithm only using colors from a palette


• Maximal chains have length at most 


• How about alternating paths?

(1 + ϵ)Δ
O(log n/ϵ)

O(log n/ϵ)



An          update time algorithm

Algorithm: If the alternating path is long, then translate the 
uncolored edge to a random position on the path, and 
reapply Vizing’s algorithm


Observation: Most positions on this alternating path are 
good for applying Vizing’s algorithm

Õ( n)
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u

v = v0 v1

v2

assume yellow 
is missing at u

v3 v4

…
…

length

= n

choose a 
rand. position,

and translate 
the uncolored



green is 
missing

An          update time algorithmÕ( n)
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At least 

fraction of them 
have same type

Ω(ϵ2/log2 n)

Same type alt-
paths are vertex-
disjoint, so most 
of them have 
length less than
O( n log2 n /ϵ2)

At most 

different types of 
alternating paths  

O(log2 n /ϵ2)
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≤ h



Improving to sub-poly update time

…
…

length
h = n

1
k + 1

Assume after i-th translation, the 
uncolored edge is uniformly 
distributed among an edge set of 
size at least (ϵ2/log2 n)i−1 ⋅ n

i
k + 1

Idea: Translate multiple times, until alt-path length is


Example: Translate k-times and we have              update time Õ(n 1
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Refining the update time analysis

Bottleneck: Only take one type of alt-path that accounts for 
a fraction of 


Refinement: Consider every type of alt-paths that accounts 
for a fraction of 

Ω(ϵ2/log2 n)

Ω(ϵ2/log3 n)
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Model the algorithm as a tree 


Each node              is associated with two fields:


• a probability mass 


• a set          of vertex-disjoint edges

𝒯

p ∈ 𝒯

μ[p] ∈ [0,1]

E[p]

Assume the at some point, 
uncolored edge is uniformly 
distributed among E[p]

E[p]

p

…… ……

E[child[blue, red]] = red edges

child[blue, red]

[child[blue, red]]μ = μ[p] ⋅ #alt-blue-red
|E[p] |

If #blue-red alt-paths is 
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then, 
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∑ [child[blue, red]]μ
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If #alt-paths of a certain type 
is smaller than 


then, 

ϵ2/log3 n ⋅ |E[p] |

∑ [child[this type]]μ
≤ μ[p]/log n

If #alt-paths of a certain type 
is larger than 


then, 

ϵ2/log3 n ⋅ |E[p] |

≥ h ⋅ ϵ2/2 log3 n ⋅ |E[p] |
| E[child[this type]] |

total mass
≥ (1 −

1
log n

)μ[p]

mass
≤ μ[p]/ log n
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alternating path shorter than h before the last iteration
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Consequently, in the last 
iteration, most alt-paths 
have poly-log length

[root] = 1μ
E[root] = {new insertion}



Thank you!


