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Distance sensitivity oralces (DSO)

Preprocess: given a directed graph G = (V ,E ) , edge weights
ω : E → R+.
Query: (s, t, f ) ∈ V 3

Answer: distG\{f }(s, t)
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A short history

Define n = |V |, m = |E |; assume Im(ω) = {1, 2, · · · ,M}.

Reference Space Query time Preprocessing

Naive O(n3) O(1) Õ(mn2)

[DT02] O(n2 log n) O(1) O(mn2)

[BK08] O(n2 log n) O(1) Õ(n2
√
m)

[BK09] O(n2 log n) O(1) Õ(mn)

[GW12] O(n2.34) O(n0.9) O(Mn2.92)

New O(n2) O(1) Õ(mn)

The set-intersection conjecture [PRT12] implies any reachability
oracle with constant query time has space Ω̃(n2). So it is not clear
if our space upper bound is tight.
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[DT02] O(n2 log n) O(1) O(mn2)

[BK08] O(n2 log n) O(1) Õ(n2
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The set-intersection conjecture [PRT12] implies any reachability
oracle with constant query time has space Ω̃(n2). So it is not clear
if our space upper bound is tight.

3 / 20



Notations

Definition
On shortest path s  t, for any h > 0, define s ⊕ h to be the
vertex which is h hops after s, and define t 	 h to be the vertex
which is h hops before t. Also, for any u, v , define interval [u, v ] in
the natural way.
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Sparse table [DT02]

Data structure: For any pair of s, t ∈ V , ∀i ∈ [0, log n]

(i) Precompute distG\{s⊕2i}(s, t) and distG\{t	2i}(s, t).

(ii) Precompute distG\[s⊕2i ,s⊕2i+1](s, t) and
distG\[t	2i+1,t	2i ](s, t).

Space complexity: O(n2 log n)
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Sparse table [DT02]

Query algorithm: On input (s, t, f ), find the largest i such that
s ⊕ 2i comes before f , and the largest j such that t 	 2j comes
after f .

(1) Paths that skip interval [s ⊕ 2i , s ⊕ 2i+1] entirely.
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Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus
Ω(n2 log n) in total.

New idea
I For each s, only choose a set of special terminals to store

O(log n) entries.

I If this proportion goes down to O(n/ log n), then we have a
sparser table of size O(n2).

How to select special terminals?
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Tree partition lemma

Lemma
Let T be a spanning tree on n vertices. For any integer 2 ≤ k ≤ n,
we can select a subset of ≤ 3k − 5 vertices whose removal
partitions T into subtrees of size ≤ n/k.
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Partition single-source shortest paths trees

Data structure: For every s ∈ V , let Ts be the single-source
shortest paths tree rooted at s, and apply Tree-partition Lemma on
Ts with parameter n/L.

An SSSP tree. Blue squares are selected
vertices.
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Sparser table

Sparser table:

(i) For every selected t, distG\{f }(s, t).

u1, u2, · · · , uk are selected in SSSP tree Ts .
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Sparser table

Sparser table:

(ii) For every selected t, distG\[u
k−2i

,u
k−2i+1

](s, t).
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Sparser table

Sparser table:

(iii) For every selected t, distG\[v
l−2j

,u
k−2i

](s, t).

u1, u2, · · · , uk are selected in SSSP tree Ts .
v1, v2, · · · , vl are selected in reverse SSSP tree T̂t .
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Sparser table

Space complexity: O(n2 log2 n/L)

If L = log2 n, then the data structure so far occupies space O(n2).
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t, f are not in the same subtree

Query algorithm: On input (s, t, f ).
First consider when a subtree-path containing f is skipped over.

(1) Paths that skip interval [vl−2j , uk−2i ] entirely.

(2) Paths that pass through uk−2i .

(3) Paths that pass through vl−2j .
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t, f are not in the same subtree

Query algorithm: On input (s, t, f ). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.

(1) Entry from the right is the easier case.

(2) Entry from the left is the easier case.

Now what if t, f are in the same subtree?
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An O(n2 log log n)-space DSO

Data structure: A truncated version of the sparse table in [DT02].

(i) For any i ≤ log(4L), precompute distG\{s⊕2i}(s, t) and
distG\{t	2i}(s, t).

(ii) For any i ≤ log(4L), precompute distG\[s⊕2i ,s⊕2i+1](s, t) and
distG\[t	2i+1,t	2i ](s, t).

Space complexity: O(n2 log L)
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An O(n2 log log n)-space DSO

Query algorithm: Suppose t, f are in the same subtree.

Analysis from [DT02] still works!

Query time: O(1)

15 / 20



How to obtain an O(n2)-space DSO?

Assume an Ω(log n)-RAM model.

Rough idea

I Further partition subtrees into even smaller ones.

I Apply the bit-tricks (“Four Russians”).
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Two-level partition of SSSP trees

Hard cases: t, f lie in the same
subtree.

Two-level partition: Tree
partition with L′ = log2 L.
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Two-level partition of SSSP trees

Easy cases: If t, f lie in
different sub-subtrees, solve it
using a truncated version of the
data structure in previous slides.

Hard cases: If t, f lie in the
same sub-subtree, solve it later
using the tabulation technique
(“Four Russians”).
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Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the
following kind; don’t care about other replacement paths.

I The replacement path is encoded as:
(1) # hops before diverge; (2) # hops after converge.

I (1)(2) can be stored in log(2L · L′)-bits.

I Configuration of this sub-subtree can be stored in
O((L′)2 · log(2L · L′)) = O(log log5 n) bits.

I All possible sub-subtree configurations can be stored in an
indexable table of size 2O(log log5 n) = o(n).
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Thanks for listening
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