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Distance sensitivity oralces (DSO)
Preprocess: given a directed graph G = (V, E) , edge weights
w:E— R,
Query: (s, t,f) e V3
Answer: distg\(r)(s, 1)
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A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time  Preprocessing
Naive 0o(n%) 0(1) O(mn?)
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A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time  Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02]  O(n?logn) 0o(1) O(mn?)
[BK0O8]  O(n?logn) 0o(1) O(n?/m)
[BK0O9]  O(n?logn) o(1) O(mn)
[GW12] O(n?3%) 0(n%?) O(Mn?92)
New 0(n?) 0(1) O(mn)

The set-intersection conjecture [PRT12] implies any reachability
oracle with constant query time has space Q2(n?). So it is not clear
if our space upper bound is tight.
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Notations

Definition

On shortest path s ~~ t, for any h > 0, define s ® h to be the
vertex which is h hops after s, and define t © h to be the vertex
which is h hops before t. Also, for any u, v, define interval [u, v] in
the natural way.

S s@h ‘i

}— h hops —|

S toh 4
. ®
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Sparse table [DTO02]

Data structure: For any pair of s, t € V, Vi € [0, log n]
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Space complexity: O(n?log n)
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Sparse table [DT02]

Query algorithm: On input (s, t,f), find the largest i such that
s @ 2' comes before f, and the largest j such that t © 2/ comes
after f.

(1) Paths that skip interval [s @ 2/, s @ 2/1] entirely.
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Sparse table [DT02]

Query algorithm: On input (s, t, ), find the largest i such that
s @ 2' comes before f, and the largest j such that t © 2/ comes
after f.

(2) Paths that pass through s @ 2'.

fo2

o
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Sparse table [DTO02]

Query algorithm: On input (s, t,f), find the largest i such that

s @ 2" comes before f, and the
after f.

(3) Paths that pass through s
through f & 2/, so we retr
storage.

largest j such that t © 2/ comes

@ 2/*1. Such a path must also pass
ieve diStG\{f}(S, fo 2j) from

S > 7 o

}7 2+l hops -

|

6/20



Sparse table [DTO02]

Query algorithm: On input (s, t, f), find the largest i such that

s @ 2" comes before f, and the
after f.

(3) Paths that pass through s
through f @& 2/, so we retr
storage.

largest j such that t © 2/ comes

@® 21 Such a path must also pass
ieve diStG\{f}(S, fo 2j) from
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Query time: O(1)
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Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus
Q(n?log n) in total.
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Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus

Q(n?log n) in total.

New idea

» For each s, only choose a set of special terminals to store
O(log n) entries.

> If this proportion goes down to O(n/log n), then we have a
sparser table of size O(n?).

How to select special terminals?
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Tree partition lemma

Lemma
Let T be a spanning tree on n vertices. For any integer 2 < k < n,

we can select a subset of < 3k — 5 vertices whose removal
partitions T into subtrees of size < n/k.
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Tree partition lemma
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Let T be a spanning tree on n vertices. For any integer 2 < k < n,
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Tree partition lemma
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Partition single-source shortest paths trees

Data structure: For every s € V, let T be the single-source
shortest paths tree rooted at s, and apply Tree-partition Lemma on
Ts with parameter n/L.

An SSSP tree. Blue squares are selected
vertices.
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Sparser table

Sparser table:
(i) For every selected t, distg\ (£} (s, t).

ui, Up, -+ , Uy are selected in SSSP tree Ts.
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Sparser table

Sparser table:

(ii) For every selected t, diStG\[uk,zf,uk,ziH](s’ t).

s Uy Uz

uy, Up, -+ , Uy are selected in SSSP tree Ts.
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Sparser table

Sparser table:
(iii) For every selected t, distg\[v,_y.,uk_zi](s, t).

ui, Up, -+ , Uy are selected in SSSP tree Ts.
vi,Vva,- -+, v are selected in reverse SSSP tree T;.
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Sparser table

Space complexity: O(n?log?n/L)

If L = log? n, then the data structure so far occupies space O(n?).
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t,f are not in the same subtree

Query algorithm: On input (s, t, f).
First consider when a subtree-path containing f is skipped over.
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t, f are not in the same subtree

Query algorithm: On input (s, t, ).
First consider when a subtree-path containing f is skipped over.
(1) Paths that skip interval [v,_oj, u,_»i] entirely.

: OO@O ---------------
s U U2 Up—2i up =1

(2) Paths that pass through uy_,i.

s Up, Uh+1 Up 420 Uy =1t




t,f are not in the same subtree

Query algorithm: On input (s, t,f). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.
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Query algorithm: On input (s, t,f). Now consider when the
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t, f are not in the same subtree

Query algorithm: On input (s, t,f). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.

(1) Entry from the right is the easier case.

ABIOR S —
S Up Uh+1 Up 421 wuy =t

(2) Entry from the left is the easier case.

Now what if t, f are in the same subtree?
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An O(n? log log n)-space DSO

Data structure: A truncated version of the sparse table in [DTO02].

14/20



An O(n? log log n)-space DSO

Data structure: A truncated version of the sparse table in [DTO02].
(i) Forany i < log(4L), precompute distg\ {sq211 (S t) and
dist g\ 1r0211 (S, t)-
diste\ (s@2:}(s,1)

=4
}— 2% hops —{
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distg [se2t,s@21+1] (5, 1)
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An O(n? log log n)-space DSO

Data structure: A truncated version of the sparse table in [DTO02].

(i) F.or any i < log(4L), precompute distg\ {sq211 (S t) and
dIStG\{tezi}(S, t).
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(i) F.or any j < log(4L), precompute distg\[sgoi sqoi+1)(S; t) and
d'StG\[t@2"+1,t92"](57 t).

distg [se2t,s@21+1] (5, 1)
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Space complexity: O(n?log L)
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An O(n? log log n)-space DSO

Query algorithm: Suppose t, f are in the same subtree.
Analysis from [DTO02] still works!

Query time: O(1)
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How to obtain an O(n?)-space DSO?

Assume an Q(log n)-RAM model.
Rough idea
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Assume an Q(log n)-RAM model.
Rough idea

» Further partition subtrees into even smaller ones.
» Apply the bit-tricks ( “Four Russians").
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Two-level partition of SSSP trees

Hard cases: t,f lie in the same
subtree.

S ]
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Two-level partition of SSSP trees

Hard cases: t,f lie in the same Two-level partition: Tree
subtree. partition with L' = log? L.

S ]

sub- subtrees
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Two-level partition of SSSP trees

Easy cases: If ¢, f lie in
different sub-subtrees, solve it
using a truncated version of the
data structure in previous slides.

S —»!
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Two-level partition of SSSP trees

Easy cases: If ¢, f lie in Hard cases: If t, f lie in the
different sub-subtrees, solve it same sub-subtree, solve it later
using a truncated version of the using the tabulation technique
data structure in previous slides. ("Four Russians").

S ——» s ——»
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Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the

following kind; don't care about other replacement paths.

converge

diverge

< 2L hops

root of sub-subtree

P> The replacement path is encoded as:
(1) # hops before diverge; (2) # hops after converge.
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Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the
following kind; don't care about other replacement paths.

converge

diverge

< 2L hops

root of sub-subtree

» Configuration of this sub-subtree can be stored in
O((L")? - log(2L - L")) = O(loglog® n) bits.

» All possible sub-subtree configurations can be stored in an
indexable table of size 20(l8log’ 1) — o(p).
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Thanks for listening
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