Improved Distance Sensitivity Oracles via Tree
Partitioning

Ran Duan Tianyi Zhang

Tsinghua University

1/20

Distance sensitivity oralces (DSO)
Preprocess: given a directed graph G = (V, E) , edge weights
w:E— R,
Query: (s, t,f) e V3
Answer: distg\(r)(s, 1)

o

Sourc&_‘ e .
terminal/ \

: _“failed

2/20

Distance sensitivity oralces (DSO)

Preprocess: given a directed graph G = (V, E) , edge weights
w:E— R,

Query: (s, t,f) e V3

Answer: distg\(r)(s, 1)

\

éourc&.\\—‘

terminal/ \

1

2/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)

3/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02] O(n*logn) O(1) O(mn?)

3/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02] O(n*logn) O(1) O(mn?)
[BK0O8] O(n?logn) 0o(1) O(n?/m)

3/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02] O(n?logn) 0o(1) O(mn?)
[BK0O8] O(n?logn) 0o(1) O(n?/m)
[BK09] O(n?log n) 0(1) O(mn)

3/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02] O(n?logn) 0o(1) O(mn?)
[BK0O8] O(n?logn) 0o(1) O(n?/m)
[BK0O9] O(n?logn) o(1) O(mn)
0.9

[GW12] O(n*3%) o(n®

3/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02] O(n*logn) O(1) O(mn?)
[BKO8] O(n?log n) 0(1) O(n?y/m)
[BK0O9] O(n?logn) o(1) O(mn)
[GW12] O(n?3%) 0(n%?) O(Mn?92)
New 0(n?) 0(1) O(mn)

3/20

A short history

Define n = |V|, m = |E|; assume Im(w) = {1,2,--- , M}.

Reference Space Query time Preprocessing
Naive 0o(n%) 0(1) O(mn?)
[DT02] O(n?logn) 0o(1) O(mn?)
[BK0O8] O(n?logn) 0o(1) O(n?/m)
[BK0O9] O(n?logn) o(1) O(mn)
[GW12] O(n?3%) 0(n%?) O(Mn?92)
New 0(n?) 0(1) O(mn)

The set-intersection conjecture [PRT12] implies any reachability
oracle with constant query time has space Q2(n?). So it is not clear
if our space upper bound is tight.

3/20

Notations

Definition

On shortest path s ~~ t, for any h > 0, define s ® h to be the
vertex which is h hops after s, and define t © h to be the vertex
which is h hops before t. Also, for any u, v, define interval [u, v] in
the natural way.

S s@h ‘i

}— h hops —|

S toh 4
. ®

4/20

Sparse table [DTO02]

Data structure: For any pair of s, t € V, Vi € [0, log n]

5/20

Sparse table [DT02]

Data structure: For any pair of s, t € V, Vi € [0, log n]
(i) Precompute distg\ (s@2i} (S, t) and distg\ (¢s0iy (S, t)-

diStG\{sezi} (S, t)

-4

}— 2% hops —{

5/20

Sparse table [DT02]

Data structure: For any pair of s, t € V, Vi € [0, log n|
(i) Precompute distg\ (s@2i} (S, t) and distg\ (¢s0iy (S, t)-

distg\ (s@2i} (8, t)

L .
}— 2ihops—{

(i) Precompute distc\ [sa0i saoi+1](S, t) and
diStG\[t@2i+17t62i](S, t).

diStG\[SGBZ“,sEI})?Jrl] (s,1t)

- £~ -
Ay
}— 2% hops —’— 2% hops —{

5/20

Sparse table [DT02]

Data structure: For any pair of s, t € V, Vi € [0, log n]
(i) Precompute distg\ (s@2i} (S, t) and distg\ (¢s0iy (S, t)-

diStG\{sezi} (S, t)

L .
}— 2ihops—{

(i) Precompute distc\ [sa0i saoi+1](S, t) and
diStG\[t@2i+17t62i](S, t).

diStG\[SGBZ“,sEI}?Jrl] (s,1t)

- £~ -
Ay
}— 2% hops —’— 2% hops —{

Space complexity: O(n?log n)

5/20

Sparse table [DT02]

Query algorithm: On input (s, t,f), find the largest i such that
s @ 2' comes before f, and the largest j such that t © 2/ comes
after f.

(1) Paths that skip interval [s @ 2/, s @ 2/1] entirely.

6/20

Sparse table [DT02]

Query algorithm: On input (s, t,), find the largest i such that
s @ 2' comes before f, and the largest j such that t © 2/ comes
after f.

(2) Paths that pass through s @ 2'.

fo2

o
}— 9% hops

6/20

Sparse table [DTO02]

Query algorithm: On input (s, t,f), find the largest i such that

s @ 2" comes before f, and the
after f.

(3) Paths that pass through s
through f & 2/, so we retr
storage.

largest j such that t © 2/ comes

@ 2/*1. Such a path must also pass
ieve diStG\{f}(S, fo 2j) from

S > 7 o

}7 2+l hops -

|

6/20

Sparse table [DTO02]

Query algorithm: On input (s, t, f), find the largest i such that

s @ 2" comes before f, and the
after f.

(3) Paths that pass through s
through f @& 2/, so we retr
storage.

largest j such that t © 2/ comes

@® 21 Such a path must also pass
ieve diStG\{f}(S, fo 2j) from

B 'Y o

}7 92t+1lhops o

|

Query time: O(1)

6/20

Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus
Q(n?log n) in total.

7/20

Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus

Q(n?log n) in total.

New idea

» For each s, only choose a set of special terminals to store
O(log n) entries.

7/20

Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus

Q(n?log n) in total.

New idea

» For each s, only choose a set of special terminals to store
O(log n) entries.

> If this proportion goes down to O(n/log n), then we have a
sparser table of size O(n?).

7/20

Observations

Previous designs of DSO rely on sparse tables. Sparse table stores
O(log n) entries for each pair of source & terminal, thus

Q(n?log n) in total.

New idea

» For each s, only choose a set of special terminals to store
O(log n) entries.

> If this proportion goes down to O(n/log n), then we have a
sparser table of size O(n?).

How to select special terminals?

7/20

Tree partition lemma

Lemma
Let T be a spanning tree on n vertices. For any integer 2 < k < n,

we can select a subset of < 3k — 5 vertices whose removal
partitions T into subtrees of size < n/k.

Q o [}
]
o o re]
o o py
o
o
o ol c =]
o o
o o o
° o o o
Q o
o
o o
o o
o
ey o
© o
o el
©
d
4 -}
o o o
[+ e o
o
-3
o o o [+] a
o o °
o
o o

8/20

Tree partition lemma

Lemma

Let T be a spanning tree on n vertices. For any integer 2 < k < n,
we can select a subset of < 3k — 5 vertices whose removal
partitions T into subtrees of size < n/k.

Q o [=]
(=]
o o =]
o] o I
(=2
o]
o o & °
o o
(=]
1 °
° | o o
Q]
o
o O
el o
-
Q
[«} = Q
(=] ol
\2]
selected
=] [=]
[|
o o o
I3 o °
(=]
-}
o o o o e
] o ©
=)
o [<]

8/20

Tree partition lemma

Lemma
Let T be a spanning tree on n vertices. For any integer 2 < k < n,

we can select a subset of < 3k — 5 vertices whose removal
partitions T into subtrees of size < n/k.

8/20

Partition single-source shortest paths trees

Data structure: For every s € V, let T be the single-source
shortest paths tree rooted at s, and apply Tree-partition Lemma on
Ts with parameter n/L.

An SSSP tree. Blue squares are selected
vertices.

9/20

Sparser table

Sparser table:
(i) For every selected t, distg\ (£} (s, t).

ui, Up, -+ , Uy are selected in SSSP tree Ts.

10/20

Sparser table

Sparser table:

(ii) For every selected t, diStG\[uk,zf,uk,ziH](s’ t).

s Uy Uz

uy, Up, -+ , Uy are selected in SSSP tree Ts.

10/20

Sparser table

Sparser table:
(iii) For every selected t, distg\[v,_y.,uk_zi](s, t).

ui, Up, -+ , Uy are selected in SSSP tree Ts.
vi,Vva,- -+, v are selected in reverse SSSP tree T;.

10/20

Sparser table

Space complexity: O(n?log?n/L)

If L = log? n, then the data structure so far occupies space O(n?).

11/20

t,f are not in the same subtree

Query algorithm: On input (s, t, f).
First consider when a subtree-path containing f is skipped over.

12/20

t, f are not in the same subtree

Query algorithm: On input (s, t, f).

First consider when a subtree-path containing f is skipped over.

(1) Paths that skip interval [v,_o;, uy_»i] entirely.

12/20

t, f are not in the same subtree

Query algorithm: On input (s, t,).
First consider when a subtree-path containing f is skipped over.
(1) Paths that skip interval [v,_oj, u,_»i] entirely.

: OO@O ---------------
s U U2 Up—2i up =1

(2) Paths that pass through u,_»i.

12/20

t, f are not in the same subtree

Query algorithm: On input (s, t,).
First consider when a subtree-path containing f is skipped over.
(1) Paths that skip interval [v,_oj, u,_»i] entirely.

: OO@O ---------------
s U U2 Up—2i up =1

(2) Paths that pass through uy_,i.

s Up, Uh+1 Up 420 Uy =1t

t,f are not in the same subtree

Query algorithm: On input (s, t,f). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.

13/20

t,f are not in the same subtree

Query algorithm: On input (s, t,f). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.

(1) Entry from the right is the easier case.

B el S |
Up+2i up =t

13/20

t, f are not in the same subtree

Query algorithm: On input (s, t,f). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.

(1) Entry from the right is the easier case.

ABIOR S —
S Up Uh+1 Up 421 wuy =t

(2) Entry from the left is the easier case.

13/20

t, f are not in the same subtree

Query algorithm: On input (s, t,f). Now consider when the
replacement path enters a subtree-path. For simplicity we only
discuss two easy cases.

(1) Entry from the right is the easier case.

ABIOR S —
S Up Uh+1 Up 421 wuy =t

(2) Entry from the left is the easier case.

Now what if t, f are in the same subtree?

13/20

An O(n? log log n)-space DSO

Data structure: A truncated version of the sparse table in [DTO02].

14/20

An O(n? log log n)-space DSO

Data structure: A truncated version of the sparse table in [DTO02].
(i) Forany i < log(4L), precompute distg\ {sq211 (S t) and
dist g\ 1r0211 (S, t)-
diste\ (s@2:}(s,1)

=4
}— 2% hops —{

(i) F.or any j < log(4L), precompute distg\[sgoi sqoi+1)(S; t) and
d'StG\[t@2"+1,t92"](57 t).

distg [se2t,s@21+1] (5, 1)

£ -
o
}— 21 hops —’— 9i hops —{

14/20

An O(n? log log n)-space DSO

Data structure: A truncated version of the sparse table in [DTO02].

(i) F.or any i < log(4L), precompute distg\ {sq211 (S t) and
dIStG\{tezi}(S, t).

diStG\{sazi} (S, t)

=4
}— 2% hops —{

(i) F.or any j < log(4L), precompute distg\[sgoi sqoi+1)(S; t) and
d'StG\[t@2"+1,t92"](57 t).

distg [se2t,s@21+1] (5, 1)

£ -
o
}— 21 hops —’— 9i hops —{

Space complexity: O(n?log L)

14/20

An O(n? log log n)-space DSO

Query algorithm: Suppose t, f are in the same subtree.
Analysis from [DTO02] still works!

Query time: O(1)

15/20

How to obtain an O(n?)-space DSO?

Assume an Q(log n)-RAM model.
Rough idea

16 /20

How to obtain an O(n?)-space DSO?

Assume an Q(log n)-RAM model.
Rough idea

» Further partition subtrees into even smaller ones.

16 /20

How to obtain an O(n?)-space DSO?

Assume an Q(log n)-RAM model.
Rough idea

» Further partition subtrees into even smaller ones.
» Apply the bit-tricks (“Four Russians").

16 /20

Two-level partition of SSSP trees

Hard cases: t,f lie in the same
subtree.

S]

17/20

Two-level partition of SSSP trees

Hard cases: t,f lie in the same Two-level partition: Tree
subtree. partition with L' = log? L.

S]

sub- subtrees

17/20

Two-level partition of SSSP trees

Easy cases: If ¢, f lie in
different sub-subtrees, solve it
using a truncated version of the
data structure in previous slides.

S —»!

18/20

Two-level partition of SSSP trees

Easy cases: If ¢, f lie in Hard cases: If t, f lie in the
different sub-subtrees, solve it same sub-subtree, solve it later
using a truncated version of the using the tabulation technique
data structure in previous slides. ("Four Russians").

S ——» s ——»

18/20

Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the

following kind; don't care about other replacement paths.

converge

diverge

< 2L hops

root of sub-subtree

P> The replacement path is encoded as:
(1) # hops before diverge; (2) # hops after converge.

19/20

Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the

following kind; don't care about other replacement paths.

converge

diverge

< 2L hops

root of sub-subtree

P> The replacement path is encoded as:
(1) # hops before diverge; (2) # hops after converge.

» (1)(2) can be stored in log(2L - L')-bits.

19/20

Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the

following kind; don't care about other replacement paths.

converge

diverge

< 2L hops

root of sub-subtree

» Configuration of this sub-subtree can be stored in
O((L")? - log(2L - L")) = O(loglog® n) bits.

19/20

Conclude with bit-tricks

Use an o(n)-space table to store all replacement paths of the
following kind; don't care about other replacement paths.

converge

diverge

< 2L hops

root of sub-subtree

» Configuration of this sub-subtree can be stored in
O((L")? - log(2L - L")) = O(loglog® n) bits.

» All possible sub-subtree configurations can be stored in an
indexable table of size 20(l8log’ 1) — o(p).

19/20

Thanks for listening

20/20

References |

[Aaron Bernstein and David Karger.
Improved distance sensitivity oracles via random sampling.
In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 34—43. Society for
Industrial and Applied Mathematics, 2008.

[Aaron Bernstein and David Karger.
A nearly optimal oracle for avoiding failed vertices and edges.
In Proceedings of the forty-first annual ACM symposium on
Theory of computing, pages 101-110. ACM, 2009.

[Camil Demetrescu and Mikkel Thorup.
Oracles for distances avoiding a link-failure.
In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 838—843. Society for
Industrial and Applied Mathematics, 2002.

20/20

References Il

[d Fabrizio Grandoni and Virginia Vassilevska Williams.
Improved distance sensitivity oracles via fast single-source
replacement paths.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 748-757. IEEE, 2012.

[Mihai Patrascu, Liam Roditty, and Mikkel Thorup.
A new infinity of distance oracles for sparse graphs.
In Foundations of Computer Science (focs), 2012 leee 53rd
Annual Symposium on, pages 738-747. IEEE, 2012.

20/20

