Faster Deterministic
Dynamic All-Pairs Shortest Paths

Shiri Chechik Tianyi Zhang

000

TELAVIV NOU'0O11IIN
UNIVERSITY Q'ONTN



Dynamic All-Pairs Shortest Paths

» Given a weighted digraph G = (V, E, w)
* A sequence of , maintain pairwise exact distances

More specifically, want a data structure:

o Ins(v, adj(v)) / Del(v)
Insert/delete vertex v in G with adjacency list adj(v); want n° runtime

e Query(u, V)
Return the shortest distance from u to v in G; want O(1) runtime



Dynamic All-Pairs Shortest Paths

» Given a weighted digraph G = (V, E, w)
* A sequence of , maintain pairwise exact distances

Why vertex updates, not edge updates?

\T./irtex deletion = edge deletion A 4

L 4

. N
a

O O O O




History

deterministic / worst-case /
randomized amortized

reference vertex update time

King, 1999  Om*\/W)  deterministic ~ amoriized
Demetrescy, ltaliano, <o L
5004 On*) deterministic amortized

Thorup, 2005 6(1@3 -1 4) deterministic worst-case

...................................................................................................................................................................................................................................................................................................................

Abraham, Chechik, =, 3_1/3 . )
cimninger, 2017 ) oo | rorstesse
Probst, Wulff-Nilsen, ~ . 3_9/7 L ]
2020 O™ ") emnEe | worstesse
New O(n3_20/61) deterministic Wworst-case

n is the number of vertices in the graph, W refers to the maximum edge weight



Previous approaches



Reduction to batch deletion

Batch deletion data structure:

* Prep(G)
Preprocess the graph G and be ready for one batch deletion and queries

 Batch(B)
Remove a subset B C V of vertices from graph G

e Query(u, V)
Return the shortest distance from u to vin G\B in O(1) time



Reduction to batch deletion

Theorem [Thorup, 2005}

* Given a batch deletion algorithm, dynamic APSP can be solved with
worst-case update time Tprep/ | B| + Tpatch + | B n*




Batch Deletion

Main difficulty: o

Precompute shortest paths in G
A single deletion can destroy a lot \




Batch Deletion

Main difficulty: o

Precompute shortest paths in G

A single deletion can destroy a lot \

Two basic ideas [Thorup, 2005]

e Shortest paths with small #hops / -
Long-hop paths can be handled using hitting sets O

* Prepare shortest paths




Batch Deletion

Main difficulty: o

Precompute shortest paths in G

A single deletion can destroy a lot \

Two basic ideas [Thorup, 2005]

e Shortest paths with small #hops / -
Long-hop paths can be handled using hitting sets O

 Prepare shortest paths




Batch Deletion

Main difficulty: o
Precompute shortest paths in G
A single deletion can destroy a lot

Two basic ideas [Thorup, 2005]

* Shortest paths with small #hops
Long-hop paths can be handled using hitting sets O

 Prepare shortest paths



Batch Deletion

Main difficulty: o
Precompute shortest paths in G
A single deletion can destroy a lot

Two basic ideas [Thorup, 2005]

* Shortest paths with small #hops
Long-hop paths can be handled using hitting sets O

 Prepare shortest paths



Hop-Restricted Shortest Paths

 An h-hop shortest path 7, Is the shortest path with at most h edges

» Single-source h-hop paths {7, },c, can be computed
using the algorithm in time

s ii < h edges 4| "

oO——m——m ——>—>—>—>0

might contain edges



The congestion technique

shortest paths [Thorup’05] [1={n,|s,t €V} asetof short paths

. L. cg(v) = #paths in 11 containin
1. Pick a vertex v that maximizes cg(v) oW) = #paths| gy

2. Compute h-hop shortest paths at v O
using Bellman-Ford o O
3. Add h-hop paths to 11, update cg(.) e O
O

4. Remove v from graph, go to Step 1




The congestion technique

shortest paths [Thorup’05] [1={n,|s,t €V} asetof short paths

: .. cg(v) = #paths in I1 containing v
1. Pick a vertex v that maximizes cg(v) 9 = #p °

2. Compute h-hop shortest paths at v @
using Bellman-Ford o O
3. Add h-hop paths to 11, update cg(.) 0O O
O

4. Remove v from graph, go to Step 1




The congestion technique

1.

shortest paths [Thorup’05]

Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v

using Bellman-Ford

3. Add h-hop paths to 11, update cg(.)

4. Remove v from graph, go to Step 1

[1={n,|s,t€&€ V}asetof short paths

cg(v) = #paths in 11 containing v
O
@< 0
O —i

O




The congestion technique

1.

shortest paths [Thorup’05]

Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v

using Bellman-Ford

3. Add h-hop paths to 11, update cg(.)

4. Remove v from graph, go to Step 1

[1={n,|s,t€&€ V}asetof short paths

cg(v) = #paths in 11 containing v

"'10 +1
@< 9
+1
’ —L +1
+1

O

+1




The congestion technique

shortest paths [Thorup’05] [1={n,|s,t €V} asetof short paths

. L. cg(v) = #paths in 11 containin
1. Pick a vertex v that maximizes cg(v) oW) = #paths| gy

2. Compute h-hop shortest paths at v O
using Bellman-Ford o O
3. Add h-hop paths to 11, update cg(.) O
O

4. Remove v from graph, go to Step 1




The congestion technique

1.

shortest paths [Thorup’05]

Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v

using Bellman-Ford

3. Add h-hop paths to 11, update cg(.)

4. Remove v from graph, go to Step 1

[1={n,|s,t€&€ V}asetof short paths

cg(v) = #paths in 11 containing v

Cr




Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17]

O

h-hop pa’% \\hop paths

O /O O\ O

h-hop paths h-hop paths



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17]

)//O \\hop paths
O O O O
@ @ @

vertex deletions

O O O



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17]

h-hop paths O n-noppaths  RRecovery algorithm:
/ \ 1.View red paths as shortcuts
2.Run Dijkstra on red / black edges
O O O O© A J

— — — Runtime =n - h-hop paths
/ \ / is small by the congestion technique
—0 —-0 —0
F N FN AN
incident incident incident

edges edges edges



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17] Recovery by path concat [P-WN’20]

h-hop paths

O h-hop paths /\
,// \ O O
O O O O

@ @ @
incident incident incident

edges edges edges



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17] Recovery by path concat [P-WN’20]

h-hop paths

h-hop paths /O \hop paths Q
\ o o
O O O O

@ @ @
incident incident incident

edges edges edges



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17] Recovery by path concat [P-WN’20]

h-hop paths

h-hop paths /O \hop paths Q
\ o o
O O O O

O

Q Q Q A deterministic ®

for h/2-hop paths O

> 1> 1 O
incident incident incident

edges edges edges



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17] Recovery by path concat [P-WN’20]

h-hop paths /O \hop paths Q
© O O o \o
Q Q Q A deterministic ®
for h/2-hop paths 0O h/2-hop paths
AT A o
incident Incident Incident

edges edges edges



Recovery from batch deletion

Recovery by Dijkstra’s algorithm [ACK’17] Recovery by path concat [P-WN’20]

h-hop paths /O \hop paths Q
\ o
O O O O O

a A determnst(:\‘c
/ for h/2-hop paths 0O h/2-hop paths
—0 —>
f N Runtime of concatenation: O
o o o nlh - h-hop paths
incident incident incident

edges edges edges



Our improvement



Outline

Dynamic APSP

T

the

Batch Deletion:
technique

| Batch Deletion:

faster preprocessing

-



Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]
1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to 11, update cg(.)

4. Remove v from graph, go to Step 1




Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

3. Add h-hop paths to 11, update cg(.)




Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05] Decremental h-hop shortest paths:

1. Pick a vertex v that maximizes cg(v) 1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
3. Add h-hop paths to 11, update cg(.) vertex

4. Go to Step 1




Decremental hop-restricted shortest paths

Trivial algorithm: Decremental h-hop shortest paths:
* Apply Bellman-Ford for h-hop SSSP 1. Adversary picks a vertex v
. Total time = n°h - #deletions 2. Gompute h-hop SSSP at v
Faster runtime? 3. Adversary deletes an arbitrary
vertex
e Jryto
under vertex deletions 4. Go to Step 1




L ocally h-hop shortest paths

 Adapt the idea of IN [Demetrescu and ltaliano, 2004]

» A path (uy, Uy, -*+, u;) is locally h-hop shortest, if both of the sub-paths
(Up, Uy, *++, Uy_y) and (Uy, -+, u;) are (h-1)-hop shortest paths

H (h-1)-hop shortest H
H (h-1)-hop shortest H



L ocally h-hop shortest paths

Shortest |locally h-hop shortest paths = h-hop shortest paths

(locally h-hop) can be bounded

 Each vertex v is on at most h different locally h-hop paths from s to t

e At most 1° log n (all-pairs locally h-hop) in total

N
~ -
~ \ e
.......
~ - -
.......
----------------

exactly k edges



L ocally h-hop shortest paths

Shortest |locally h-hop shortest paths = h-hop shortest paths

(locally h-hop) can be bounded

 Each vertex v is on at most h different locally h-hop paths from s to t

e At most 1° log n (all-pairs locally h-hop) in total

N
b
§~. ‘f
L -
~ -
il I R



L ocally h-hop shortest paths

Shortest |locally h-hop shortest paths = h-hop shortest paths

(locally h-hop) can be bounded

 Each vertex v is on at most h different locally h-hop paths from s to t

e At most 1° log n (all-pairs locally h-hop) in total



Decremental locally h-hop shortest paths

Maintain all locally h-hop shortest paths
under vertex deletions

total #(locally h-hop paths)



Decremental locally h-hop shortest paths

locally h-hop

Maintain all locally h-hop shortest paths
under vertex deletions

1. A vertex deletion hits at most n2h

Runtime = #(destroyed) < n’h n2

total #(locally h-hop paths)



Decremental locally h-hop shortest paths

New locally
h-hop paths

Maintain all locally h-hop shortest paths
under vertex deletions

1. A vertex deletion hits at most n2h

Runtime = #(destroyed) < n’h n2

2. A vertex deletion may generate 7 :
new locally h-hop shortest paths

Runtime = #(new locally h-hop) total #(locally h-hop paths)



Decremental locally h-hop shortest paths

Maintain all locally h-hop shortest paths
under vertex deletions

1. A vertex deletion hits at most n2h

Runtime = #(destroyed) < n’h

2. A vertex deletion may generate
new locally h-hop shortest paths

Runtime = #(new locally h-hop)

3. Output-sensitive —> total time = n h

New locally
h-hop paths

total #(locally h-hop paths)



Accelerating Bellman-Ford

Original goal: Trivial algorithm:
1. Adversary picks a vertex v * Apply Bellman-Ford for h-hop SSSP
2. Gompute h-hop SSSP at v . Total time = n?h - #deletions
3. Adversary deletes an arbitrary Faster runtime?
vertex
 Decremental h-hop paths has total
4. Go to Step 1 ‘untime = 13/




Accelerating Bellman-Ford

Faster runtime?

Original goal:

 Decremental h-hop paths has total
1. Adversary picks a vertex v runtime = n2h,

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1




Accelerating Bellman-Ford

Faster runtime?

Original goal:

 Decremental h-hop paths has total

1. Adversary picks a vertex v runtime = n2h,

2. Compute h-hop SSSP at v Solution:

3. Adversary deletes an arbitrary * Apply decremental g-hop paths
vertex

. Bellman-Ford runs in time n°h/ g
4. Go to Step 1

. Total time =n>(g + hl/g) < n’h



Accelerating Bellman-Ford

Faster runtime?

Original goal:
 Decremental h-hop paths has total
1. Adversary picks a vertex v runtime = n2h,
2. Compute h-hop SSSP at v Solution:
3. Adversary deletes an arbitrary * Apply decremental g-hop paths
vertex e e e e mmmeemeeemeeemeeemeemmmeee—.
. » Bellman-Ford runs in time nzh/g
4. Go to Step 1 Nmeemmsssscsmssssssssscssssssssaa

. Total time =n>(g + hl/g) < n’h



Accelerating Bellman-Ford

Bellman-Ford runs in time n’h/g

1. Standard Bellman-Ford = of dynamic programming

2. Compress every g-rounds into a single round using g-hop paths



Accelerating Bellman-Ford

Bellman-Ford runs in time n’h/g

1. Standard Bellman-Ford = of dynamic programming

2. Compress every g-rounds into a single round using g-hop paths

O
O
O




Accelerating Bellman-Ford

Bellman-Ford runs in time n’h/g

1. Standard Bellman-Ford = of dynamic programming

2. Compress every g-rounds into a single round using g-hop paths

O
O
O0—O

ii g rounds 4‘




Further Questions

e Faster randomized worst-case update time n >-13-¢9

e Faster deterministic worst-case update time n>-13 9

Thank you !



