Faster Deterministic Worst-Case Dynamic All-Pairs Shortest Paths

Shiri Chechik

Tianyi Zhang

Dynamic All-Pairs Shortest Paths

- Given a weighted digraph $G = (V, E, \omega)$
- A sequence of vertex updates, maintain pairwise exact distances

More specifically, want a data structure:

- lns(v, adj(v)) / Del(v)Insert/delete vertex v in G with adjacency list adj(v); want n^2 runtime
- **Query**(u, v) Return the shortest distance from u to v in G; want O(1) runtime

Dynamic All-Pairs Shortest Paths

- Given a weighted digraph $G = (V, E, \omega)$
- A sequence of vertex updates, maintain pairwise exact distances

Why vertex updates, not edge updates?

reference	vertex update time	deterministic / randomized	worst-case / amortized
King, 1999	$\tilde{O}(n^{2.5}\sqrt{W})$	deterministic	amortized
Demetrescu, Italiano, 2004	$\tilde{O}(n^2)$	deterministic	amortized
Thorup, 2005	$\tilde{O}(n^{3-1/4})$	deterministic	worst-case
Abraham, Chechik, Krinninger, 2017	$\tilde{O}(n^{3-1/3})$	randomized	worst-case
Probst, Wulff-Nilsen, 2020	$\tilde{O}(n^{3-2/7})$	deterministic	worst-case
New	$\tilde{O}(n^{3-20/61})$	deterministic	worst-case

n is the number of vertices in the graph, W refers to the maximum edge weight

History

Previous approaches

Reduction to batch deletion

Batch deletion data structure:

- **Prep**(G)
- **Batch**(B) Remove a subset $B \subseteq V$ of vertices from graph G
- **Query**(u, v) Return the shortest distance from u to v in $G \setminus B$ in O(1) time

Preprocess the graph G and be ready for **one batch deletion** and queries

Reduction to batch deletion

Theorem [Thorup, 2005]

- Batch(B)
 - Remove a subset $B \subseteq V$ of vertices from graph G
- Query(u, v)Return the shortest distance from u to v in $G \setminus B$ in O(1) time

Given a batch deletion algorithm, dynamic APSP can be solved with worst-case update time $T_{prep}/|B| + T_{batch} + |B|n^2$

Precompute shortest paths in G A single deletion can destroy a lot

Batch Deletion

Batch Deletion

Main difficulty:

Precompute shortest paths in G A single deletion can **destroy a lot**

Two basic ideas [Thorup, 2005]

- Shortest paths with small #hops Long-hop paths can be handled using hitting sets
- Prepare low-congestion shortest paths

Precompute shortest paths in G A single deletion can **destroy a lot**

Two basic ideas [Thorup, 2005]

- Shortest paths with small #hops Long-hop paths can be handled using hitting sets
- **Prepare low-congestion shortest paths**

Batch Deletion

Identify a highly congested vertex

Precompute shortest paths in G A single deletion can **destroy a lot**

Two basic ideas [Thorup, 2005]

- Shortest paths with small #hops Long-hop paths can be handled using hitting sets
- **Prepare low-congestion shortest paths**

Precompute shortest paths in G A single deletion can **destroy a lot**

Two basic ideas [Thorup, 2005]

- Shortest paths with small #hops Long-hop paths can be handled using hitting sets
- **Prepare low-congestion shortest paths**

Batch Deletion

Precompute shortest detours

Hop-Restricted Shortest Paths

- An h-hop shortest path $\pi_{s,t}$ is the shortest path with at most h edges
- Single-source h-hop paths $\{\pi_{s,t}\}_{t\in V}$ can be computed using the **Bellman-Ford** algorithm in time n^2h

Ordinary shortest path might contain $\gg h$ edges

Low-congestion shortest paths [Thorup'05]

- 1. Pick a vertex v that maximizes cg(v)
- Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)
- 4. Remove v from graph, go to Step 1

Low-congestion shortest paths [Thorup'05]

- 1. Pick a vertex v that maximizes cg(v)
- Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)
- 4. Remove v from graph, go to Step 1

Low-congestion shortest paths [Thorup'05]

- 1. Pick a vertex v that maximizes cg(v)
- 2. Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)
- 4. Remove v from graph, go to Step 1 Δ

 $\Pi = \{\pi_{s,t} \mid s, t \in V\} \text{ a set of short paths}$ $cg(v) = #paths in \Pi containing v$

Low-congestion shortest paths [Thorup'05]

- 1. Pick a vertex v that maximizes cg(v)
- 2. Compute h-hop shortest paths at v using Bellman-Ford
- Add h-hop paths to Π , update cg(.) 3.
- 4. Remove v from graph, go to Step 1 Δ

 $\Pi = \{\pi_{s,t} \mid s, t \in V\} \text{ a set of short paths}$ $cg(v) = #paths in \Pi containing v$

Low-congestion shortest paths [Thorup'05]

- 1. Pick a vertex v that maximizes cg(v)
- Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)

4. Remove v from graph, go to Step 1

Low-congestion shortest paths [Thorup'05]

- 1. Pick a vertex v that maximizes cg(v)
- 2. Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)

4. Remove v from graph, go to Step 1 Δ

 $\Pi = \{\pi_{s,t} \mid s, t \in V\} \text{ a set of short paths}$ $cg(v) = #paths in \Pi containing v$

Recovery by Dijkstra's algorithm [ACK'17]

Recovery by Dijkstra's algorithm [ACK'17]

Recovery by Dijkstra's algorithm [ACK'17]

Recovery algorithm: 1. View red paths as **shortcuts** 2.Run Dijkstra on red / black edges

Runtime = $n \cdot \text{#destroyed}$ h-hop paths

#destroyed is small by the congestion technique

Recovery by Dijkstra's algorithm [ACK'17] **Recovery by path concat [P-WN'20]**

h-hop paths

Recovery by Dijkstra's algorithm [ACK'17] **Recovery by path concat [P-WN'20]**

h-hop paths

Recovery by Dijkstra's algorithm [ACK'17] **Recovery by path concat [P-WN'20]**

h-hop paths

A deterministic hitting set for h/2-hop paths

Recovery by Dijkstra's algorithm [ACK'17] **Recovery by path concat [P-WN'20]**

h-hop paths

A deterministic hitting set for h/2-hop paths

Recovery by path concat [P-WN'20] Recovery by Dijkstra's algorithm [ACK'17]

h-hop paths

A deterministic hitting set for h/2-hop paths

Runtime of concatenation:

 $n/h \cdot \text{#destroyed}$ h-hop paths

Our improvement

Batch Deletion: the congestion technique

[Thorup'05, ACK'17, PG-WN'20]

Outline

Batch Deletion: faster preprocessing

- Low-congestion shortest paths [Thorup'C
- 1. Pick a vertex v that maximizes cg(v)
- Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)
- 4. Remove v from graph, go to Step 1

05]	

- Low-congestion shortest paths [Thorup'05]
- 1. Pick a vertex v that maximizes cg(v)
- 2. Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)

4. Remove v from graph, go to Step 1

- Low-congestion shortest paths [Thorup'05]
- 1. Pick a vertex v that maximizes cg(v)
- 2. Compute h-hop shortest paths at v using Bellman-Ford
- 3. Add h-hop paths to Π , update cg(.)

4. Remove v from graph, go to Step 1

Decremental h-hop shortest paths:

- 1. Adversary picks a vertex v
- 2. Compute h-hop SSSP at v
- 3. Adversary deletes an arbitrary vertex
- 4. Go to Step 1

Trivial algorithm:

- Apply Bellman-Ford for h-hop SSSP
- Total time = $n^2h \cdot \text{#deletions}$

Faster runtime?

• Try to maintain all h-hop paths under vertex deletions

Decremental h-hop shortest paths:

- 1. Adversary picks a vertex v
- 2. Compute h-hop SSSP at v
- 3. Adversary deletes an arbitrary vertex

Go to Step 1

- $\langle u_0, u_1, \dots, u_{k-1} \rangle$ and $\langle u_1, \dots, u_k \rangle$ are (h-1)-hop shortest paths

Adapt the idea of locally shortest paths in [Demetrescu and Italiano, 2004]

• A path $\langle u_0, u_1, \dots, u_k \rangle$ is locally h-hop shortest, if both of the sub-paths

Shortest locally h-hop shortest paths = h-hop shortest paths

#(locally h-hop) can be bounded

- Each vertex v is on at most h different locally h-hop paths from s to t
- At most $n^3 \log n$ (all-pairs locally h-hop) in total

Shortest locally h-hop shortest paths = h-hop shortest paths

#(locally h-hop) can be bounded

- Each vertex v is on at most h different locally h-hop paths from s to t
- At most $n^3 \log n$ (all-pairs locally h-hop) in total

Shortest locally h-hop shortest paths = h-hop shortest paths

#(locally h-hop) can be bounded

- Each vertex v is on at most h different locally h-hop paths from s to t
- At most $n^3 \log n$ (all-pairs locally h-hop) in total

Maintain all locally h-hop shortest paths under vertex deletions

Maintain all locally h-hop shortest paths under vertex deletions

- 1. A vertex deletion **hits** at most n^2h old locally h-hop shortest paths
 - Runtime = #(destroyed) $\leq n^2 h$

Maintain all locally h-hop shortest paths under vertex deletions

1. A vertex deletion **hits** at most n^2h old locally h-hop shortest paths

Runtime = #(destroyed) $\leq n^2 h$

2. A vertex deletion may generate new locally h-hop shortest paths

Runtime = #(new locally h-hop)

Maintain all locally h-hop shortest paths under vertex deletions

1. A vertex deletion **hits** at most n^2h old locally h-hop shortest paths

Runtime = #(destroyed) $\leq n^2 h$

2. A vertex deletion may generate new locally h-hop shortest paths

Runtime = #(new locally h-hop)

3. Output-sensitive —> total time = n^3h

Original goal:

- 1. Adversary picks a vertex v
- 2. Compute h-hop SSSP at v
- 3. Adversary **deletes an arbitrary** vertex
- 4. Go to Step 1

Trivial algorithm:

- Apply Bellman-Ford for h-hop SSSP
- Total time = $n^2h \cdot \text{#deletions}$

Faster runtime?

• Decremental h-hop paths has total runtime = n^3h , no improvement

Original goal:

- 1. Adversary picks a vertex v
- 2. Compute h-hop SSSP at v
- 3. Adversary **deletes an arbitrary** vertex
- 4. Go to Step 1

Faster runtime?

• Decremental h-hop paths has total runtime = n^3h , no improvement

Original goal:

- 1. Adversary picks a vertex v
- 2. Compute h-hop SSSP at v
- 3. Adversary deletes an arbitrary vertex
- 4. Go to Step 1

Faster runtime?

• Decremental h-hop paths has total runtime = n^3h , no improvement

Solution:

- Apply decremental g-hop paths
- Bellman-Ford runs in time n^2h/g
- Total time = $n^3(g + h/g) < n^3h$

Original goal:

- 1. Adversary picks a vertex v
- 2. Compute h-hop SSSP at v
- 3. Adversary deletes an arbitrary vertex
- 4. Go to Step 1

Faster runtime?

• Decremental h-hop paths has total runtime = n^3h , no improvement

Solution:

Apply decremental g-hop paths

• Total time = $n^3(g + h/g) < n^3h$

Bellman-Ford runs in time n^2h/g

- 1. Standard Bellman-Ford = h rounds of dynamic programming
- 2. Compress every g-rounds into a single round using g-hop paths

Bellman-Ford runs in time n^2h/g

- 1. Standard Bellman-Ford = h rounds of dynamic programming
- 2. Compress every g-rounds into a single round using g-hop paths

Bellman-Ford runs in time n^2h/g

- 1. Standard Bellman-Ford = h rounds of dynamic programming
- 2. Compress every g-rounds into a single round using g-hop paths

- Faster deterministic worst-case update time $n^{3-1/3}$?

Thank you !

Further Questions

• Faster randomized worst-case update time $n^{3-1/3-\epsilon}$?