
Faster Deterministic Worst-Case 
Dynamic All-Pairs Shortest Paths

Shiri Chechik Tianyi Zhang

Dynamic All-Pairs Shortest Paths

• Given a weighted digraph

• A sequence of vertex updates, maintain pairwise exact distances

More specifically, want a data structure:

• Ins(v,) / Del(v) 
Insert/delete vertex v in G with adjacency list ; want runtime

• Query(u, v) 
Return the shortest distance from u to v in G; want runtime

G = (V, E, ω)

adj(v)
adj(v) n2

O(1)

Dynamic All-Pairs Shortest Paths

• Given a weighted digraph

• A sequence of vertex updates, maintain pairwise exact distances

Why vertex updates, not edge updates?

G = (V, E, ω)

vertex deletion = edge deletion

History
reference vertex update time deterministic /

randomized
worst-case /

amortized

King, 1999 deterministic amortized

Demetrescu, Italiano,
2004 deterministic amortized

Thorup, 2005 deterministic worst-case

Abraham, Chechik,
Krinninger, 2017 randomized worst-case

Probst, Wulff-Nilsen,
2020 deterministic worst-case

New deterministic worst-case

Õ(n2.5 W)

n is the number of vertices in the graph, W refers to the maximum edge weight

Õ(n2)

Õ(n3−1/4)

Õ(n3−1/3)

Õ(n3−2/7)

Õ(n3−20/61)

Previous approaches

Reduction to batch deletion

Batch deletion data structure:

• Prep(G) 
Preprocess the graph G and be ready for one batch deletion and queries

• Batch(B) 
Remove a subset of vertices from graph G

• Query(u, v) 
Return the shortest distance from u to v in in O(1) time

B ⊆ V

G∖B

Reduction to batch deletion

Batch deletion data structure:

• Prep(G) 
Preprocess the graph G and be ready for one batch deletion and queries

• Batch(B) 
Remove a subset of vertices from graph G

• Query(u, v) 
Return the shortest distance from u to v in in O(1) time

B ⊆ V

G∖B

Theorem [Thorup, 2005]

• Given a batch deletion algorithm, dynamic APSP can be solved with
worst-case update time Tprep/ |B | + Tbatch + |B |n2

Batch Deletion

Main difficulty: 
Precompute shortest paths in G 
A single deletion can destroy a lot

Batch Deletion

Main difficulty: 
Precompute shortest paths in G 
A single deletion can destroy a lot

Two basic ideas [Thorup, 2005]

• Shortest paths with small #hops 
Long-hop paths can be handled using hitting sets

• Prepare low-congestion shortest paths

Batch Deletion

Main difficulty: 
Precompute shortest paths in G 
A single deletion can destroy a lot

Two basic ideas [Thorup, 2005]

• Shortest paths with small #hops 
Long-hop paths can be handled using hitting sets

• Prepare low-congestion shortest paths

Identify a highly
congested vertex

Batch Deletion

Main difficulty: 
Precompute shortest paths in G 
A single deletion can destroy a lot

Two basic ideas [Thorup, 2005]

• Shortest paths with small #hops 
Long-hop paths can be handled using hitting sets

• Prepare low-congestion shortest paths

Remove this
vertex in advance

Batch Deletion

Main difficulty: 
Precompute shortest paths in G 
A single deletion can destroy a lot

Two basic ideas [Thorup, 2005]

• Shortest paths with small #hops 
Long-hop paths can be handled using hitting sets

• Prepare low-congestion shortest paths

Precompute
shortest detours

Hop-Restricted Shortest Paths
• An h-hop shortest path is the shortest path with at most h edges

• Single-source h-hop paths can be computed  
using the Bellman-Ford algorithm in time

πs,t

{πs,t}t∈V
n2h

s t edges≤ h

Ordinary shortest path might contain edges≫ h

The congestion technique

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in containing vΠ

The congestion technique

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in containing vΠ

The congestion technique

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in containing vΠ

The congestion technique

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in containing vΠ

+1

+1

+1

+1 +1

+1

+1

The congestion technique

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in containing vΠ

The congestion technique

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in containing vΠ

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

h-hop paths

h-hop paths

h-hop paths

h-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

vertex deletions

h-hop paths h-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident
edges

incident
edges

incident
edges

Recovery algorithm:
1.View red paths as shortcuts

2.Run Dijkstra on red / black edges

Runtime = #destroyed h-hop paths 
 
#destroyed is small by the congestion technique

n ⋅

h-hop paths h-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident
edges

incident
edges

incident
edges

Recovery by path concat [P-WN’20]

h-hop paths h-hop paths

h-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident
edges

incident
edges

incident
edges

Recovery by path concat [P-WN’20]

h-hop paths h-hop paths

h-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident
edges

incident
edges

incident
edges

Recovery by path concat [P-WN’20]

h-hop paths h-hop paths

h-hop paths

A deterministic
hitting set  

for h/2-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident
edges

incident
edges

incident
edges

Recovery by path concat [P-WN’20]

h-hop paths h-hop paths

h-hop paths

A deterministic
hitting set  

for h/2-hop paths h/2-hop paths

Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident
edges

incident
edges

incident
edges

Recovery by path concat [P-WN’20]

h-hop paths h-hop paths

h-hop paths

A deterministic
hitting set  

for h/2-hop paths h/2-hop paths

Runtime of concatenation: 
 #destroyed h-hop pathsn/h ⋅

Our improvement

Outline

Batch Deletion:  
the congestion technique

Batch Deletion:  
faster preprocessing

new

Dynamic APSP

[Thorup’05, ACK’17, PG-WN’20]

standard reduction

Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]

1. Pick a vertex v that maximizes cg(v)

2. Compute h-hop shortest paths at v
using Bellman-Ford

3. Add h-hop paths to , update cg(.)

4. Remove v from graph, go to Step 1

Π

Decremental h-hop shortest paths:

1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1

Decremental hop-restricted shortest paths

Decremental h-hop shortest paths:

1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1

Trivial algorithm:

• Apply Bellman-Ford for h-hop SSSP

• Total time = #deletions

Faster runtime?

• Try to maintain all h-hop paths
under vertex deletions

n2h ⋅

Locally h-hop shortest paths
• Adapt the idea of locally shortest paths in [Demetrescu and Italiano, 2004]

• A path is locally h-hop shortest, if both of the sub-paths
 and are (h-1)-hop shortest paths

⟨u0, u1, ⋯, uk⟩
⟨u0, u1, ⋯, uk−1⟩ ⟨u1, ⋯, uk⟩

(h-1)-hop shortest

(h-1)-hop shortest

Locally h-hop shortest paths

s t

exactly k edges

exactly k edges

Shortest locally h-hop shortest paths = h-hop shortest paths

#(locally h-hop) can be bounded

• Each vertex v is on at most h different locally h-hop paths from s to t

• At most (all-pairs locally h-hop) in totaln3 log n

v

Locally h-hop shortest paths

s t

exactly k edges

exactly k edges

same path!

Shortest locally h-hop shortest paths = h-hop shortest paths

#(locally h-hop) can be bounded

• Each vertex v is on at most h different locally h-hop paths from s to t

• At most (all-pairs locally h-hop) in totaln3 log n

v

Locally h-hop shortest paths

s t

exactly k edges

exactly k edges

same path!same path!

Shortest locally h-hop shortest paths = h-hop shortest paths

#(locally h-hop) can be bounded

• Each vertex v is on at most h different locally h-hop paths from s to t

• At most (all-pairs locally h-hop) in totaln3 log n

v

Decremental locally h-hop shortest paths

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

Maintain all locally h-hop shortest paths
under vertex deletions

Decremental locally h-hop shortest paths

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

Destroyed
locally h-hop

Maintain all locally h-hop shortest paths
under vertex deletions

1. A vertex deletion hits at most  
old locally h-hop shortest paths 
 
Runtime = #(destroyed)

n2h

≤ n2h

Decremental locally h-hop shortest paths
Maintain all locally h-hop shortest paths
under vertex deletions

1. A vertex deletion hits at most  
old locally h-hop shortest paths 
 
Runtime = #(destroyed)

2. A vertex deletion may generate  
new locally h-hop shortest paths 
 
Runtime = #(new locally h-hop)

n2h

≤ n2h

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

New locally  
h-hop paths

Decremental locally h-hop shortest paths
Maintain all locally h-hop shortest paths
under vertex deletions

1. A vertex deletion hits at most  
old locally h-hop shortest paths 
 
Runtime = #(destroyed)

2. A vertex deletion may generate  
new locally h-hop shortest paths 
 
Runtime = #(new locally h-hop)

3. Output-sensitive —> total time

n2h

≤ n2h

= n3h

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

New locally  
h-hop paths

Accelerating Bellman-Ford

Original goal:

1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1

Trivial algorithm:

• Apply Bellman-Ford for h-hop SSSP

• Total time = #deletions

Faster runtime?

• Decremental h-hop paths has total
runtime = , no improvement

n2h ⋅

n3h

Accelerating Bellman-Ford

Original goal:

1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1

Faster runtime?

• Decremental h-hop paths has total
runtime = , no improvementn3h

Faster runtime?

• Decremental h-hop paths has total
runtime = , no improvement

Solution:

• Apply decremental g-hop paths

• Bellman-Ford runs in time

• Total time =

n3h

n2h/g

n3(g + h/g) < n3h

Accelerating Bellman-Ford

Original goal:

1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1

Faster runtime?

• Decremental h-hop paths has total
runtime = , no improvement

Solution:

• Apply decremental g-hop paths

• Bellman-Ford runs in time

• Total time =

n3h

n2h/g

n3(g + h/g) < n3h

Accelerating Bellman-Ford

Original goal:

1. Adversary picks a vertex v

2. Compute h-hop SSSP at v

3. Adversary deletes an arbitrary
vertex

4. Go to Step 1

Bellman-Ford runs in time

1. Standard Bellman-Ford = h rounds of dynamic programming

2. Compress every g-rounds into a single round using g-hop paths

n2h/g

Accelerating Bellman-Ford

……… ………

h rounds of DP

Bellman-Ford runs in time

1. Standard Bellman-Ford = h rounds of dynamic programming

2. Compress every g-rounds into a single round using g-hop paths

n2h/g

Accelerating Bellman-Ford

……… ………

h rounds of DP

= g-hop shortest paths

Bellman-Ford runs in time

1. Standard Bellman-Ford = h rounds of dynamic programming

2. Compress every g-rounds into a single round using g-hop paths

n2h/g

Accelerating Bellman-Ford

……… ………

h rounds of DP

g rounds g rounds
= g-hop shortest paths

Further Questions

• Faster randomized worst-case update time ?

• Faster deterministic worst-case update time ?

n3−1/3−ϵ

n3−1/3

Thank you !

