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Dynamic All-Pairs Shortest Paths

• Given a weighted digraph 


• A sequence of vertex updates, maintain pairwise exact distances 

More specifically, want a data structure:


• Ins(v, ) / Del(v) 
Insert/delete vertex v in G with adjacency list ; want  runtime 

• Query(u, v) 
Return the shortest distance from u to v in G; want  runtime

G = (V, E, ω)

adj(v)
adj(v) n2

O(1)



Dynamic All-Pairs Shortest Paths

• Given a weighted digraph 


• A sequence of vertex updates, maintain pairwise exact distances 

Why vertex updates, not edge updates?

G = (V, E, ω)

vertex deletion = edge deletion



History
reference vertex update time deterministic / 

randomized
worst-case / 

amortized

King, 1999 deterministic amortized

Demetrescu, Italiano, 
2004 deterministic amortized

Thorup, 2005 deterministic worst-case

Abraham, Chechik, 
Krinninger, 2017 randomized worst-case

Probst, Wulff-Nilsen, 
2020 deterministic worst-case

New deterministic worst-case

Õ(n2.5 W)

n is the number of vertices in the graph,    W refers to the maximum edge weight

Õ(n2)

Õ(n3−1/4)

Õ(n3−1/3)

Õ(n3−2/7)

Õ(n3−20/61)



Previous approaches



Reduction to batch deletion

Batch deletion data structure:


• Prep(G) 
Preprocess the graph G and be ready for one batch deletion and queries


• Batch(B) 
Remove a subset  of vertices from graph G


• Query(u, v) 
Return the shortest distance from u to v in  in O(1) time

B ⊆ V

G∖B



Reduction to batch deletion

Batch deletion data structure:


• Prep(G) 
Preprocess the graph G and be ready for one batch deletion and queries


• Batch(B) 
Remove a subset  of vertices from graph G


• Query(u, v) 
Return the shortest distance from u to v in  in O(1) time

B ⊆ V

G∖B

Theorem [Thorup, 2005]


• Given a batch deletion algorithm, dynamic APSP can be solved with 
worst-case update time Tprep/ |B | + Tbatch + |B |n2
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Precompute shortest paths in G 
A single deletion can destroy a lot
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congested vertex



Batch Deletion

Main difficulty: 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• Prepare low-congestion shortest paths

Remove this 
vertex in advance



Batch Deletion

Main difficulty: 
Precompute shortest paths in G 
A single deletion can destroy a lot 

Two basic ideas [Thorup, 2005]


• Shortest paths with small #hops 
Long-hop paths can be handled using hitting sets


• Prepare low-congestion shortest paths

Precompute 
shortest detours



Hop-Restricted Shortest Paths
• An h-hop shortest path  is the shortest path with at most h edges 

• Single-source h-hop paths  can be computed  
using the Bellman-Ford algorithm in time 

πs,t

{πs,t}t∈V
n2h

s t edges≤ h

Ordinary shortest path might contain  edges≫ h



The congestion technique

Low-congestion shortest paths [Thorup’05]


1. Pick a vertex v that maximizes cg(v)


2. Compute h-hop shortest paths at v 
using Bellman-Ford


3. Add h-hop paths to , update cg(.)


4. Remove v from graph, go to Step 1

Π

 a set of short pathsΠ = {πs,t ∣ s, t ∈ V}

cg(v) = #paths in  containing vΠ
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The congestion technique

Low-congestion shortest paths [Thorup’05]


1. Pick a vertex v that maximizes cg(v)


2. Compute h-hop shortest paths at v 
using Bellman-Ford


3. Add h-hop paths to , update cg(.)


4. Remove v from graph, go to Step 1

Π
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Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

vertex deletions

h-hop paths h-hop paths



Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident  
edges

incident  
edges

incident  
edges

Recovery algorithm: 
1.View red paths as shortcuts

2.Run Dijkstra on red / black edges


Runtime = #destroyed h-hop paths 
 
#destroyed is small by the congestion technique

n ⋅

h-hop paths h-hop paths
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Recovery from batch deletion
Recovery by Dijkstra’s algorithm [ACK’17]

incident  
edges

incident  
edges

incident  
edges

Recovery by path concat [P-WN’20]

h-hop paths h-hop paths

h-hop paths

A deterministic 
hitting set  

for h/2-hop paths h/2-hop paths

Runtime of concatenation: 
 #destroyed h-hop pathsn/h ⋅



Our improvement



Outline

Batch Deletion:  
the congestion technique

Batch Deletion:  
faster preprocessing

new

Dynamic APSP

[Thorup’05, ACK’17, PG-WN’20]

standard reduction



Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]
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Decremental hop-restricted shortest paths

Low-congestion shortest paths [Thorup’05]


1. Pick a vertex v that maximizes cg(v)


2. Compute h-hop shortest paths at v 
using Bellman-Ford 

3. Add h-hop paths to , update cg(.)


4. Remove v from graph, go to Step 1

Π

Decremental h-hop shortest paths:


1. Adversary picks a vertex v


2. Compute h-hop SSSP at v 

3. Adversary deletes an arbitrary 
vertex


4. Go to Step 1



Decremental hop-restricted shortest paths

Decremental h-hop shortest paths:


1. Adversary picks a vertex v


2. Compute h-hop SSSP at v 

3. Adversary deletes an arbitrary 
vertex


4. Go to Step 1

Trivial algorithm:


• Apply Bellman-Ford for h-hop SSSP


• Total time = #deletions 

Faster runtime?


• Try to maintain all h-hop paths 
under vertex deletions

n2h ⋅



Locally h-hop shortest paths
• Adapt the idea of locally shortest paths in [Demetrescu and Italiano, 2004]


• A path  is locally h-hop shortest, if both of the sub-paths 
 and  are (h-1)-hop shortest paths

⟨u0, u1, ⋯, uk⟩
⟨u0, u1, ⋯, uk−1⟩ ⟨u1, ⋯, uk⟩

(h-1)-hop shortest

(h-1)-hop shortest



Locally h-hop shortest paths

s t

exactly k edges

exactly k edges

Shortest locally h-hop shortest paths = h-hop shortest paths


#(locally h-hop) can be bounded


• Each vertex v is on at most h different locally h-hop paths from s to t


• At most  (all-pairs locally h-hop) in totaln3 log n

v
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Locally h-hop shortest paths

s t

exactly k edges

exactly k edges

same path!same path!

Shortest locally h-hop shortest paths = h-hop shortest paths


#(locally h-hop) can be bounded


• Each vertex v is on at most h different locally h-hop paths from s to t


• At most  (all-pairs locally h-hop) in totaln3 log n

v



Decremental locally h-hop shortest paths

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

Maintain all locally h-hop shortest paths 
under vertex deletions



Decremental locally h-hop shortest paths

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

Destroyed 
locally h-hop 

Maintain all locally h-hop shortest paths 
under vertex deletions 

1. A vertex deletion hits at most   
old locally h-hop shortest paths 
 
Runtime = #(destroyed)

n2h

≤ n2h
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Decremental locally h-hop shortest paths
Maintain all locally h-hop shortest paths 
under vertex deletions 

1. A vertex deletion hits at most   
old locally h-hop shortest paths 
 
Runtime = #(destroyed) 


2. A vertex deletion may generate  
new locally h-hop shortest paths 
 
Runtime = #(new locally h-hop)


3. Output-sensitive —> total time

n2h

≤ n2h

= n3h

total #(locally h-hop paths)

n

n2

…
…

…
…

n3

n2h

New locally  
h-hop paths



Accelerating Bellman-Ford

Original goal: 

1. Adversary picks a vertex v


2. Compute h-hop SSSP at v 

3. Adversary deletes an arbitrary 
vertex


4. Go to Step 1

Trivial algorithm:


• Apply Bellman-Ford for h-hop SSSP


• Total time = #deletions 

Faster runtime?


• Decremental h-hop paths has total 
runtime = , no improvement

n2h ⋅

n3h
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Bellman-Ford runs in time 


1. Standard Bellman-Ford = h rounds of dynamic programming


2. Compress every g-rounds into a single round using g-hop paths

n2h/g

Accelerating Bellman-Ford

……… ………

h rounds of DP
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Bellman-Ford runs in time 


1. Standard Bellman-Ford = h rounds of dynamic programming


2. Compress every g-rounds into a single round using g-hop paths

n2h/g

Accelerating Bellman-Ford

……… ………

h rounds of DP

g rounds g rounds 
= g-hop shortest paths



Further Questions

• Faster randomized worst-case update time  ?


• Faster deterministic worst-case update time  ?

n3−1/3−ϵ

n3−1/3

Thank you !


