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 a subgraph of small size that approximately preserves distances

G = (V, E, ω)

H ⊆ G

Multiplicative stretch: 

• Size:  

• Approximation: , 


• Optimal under the girth conjecture

|H | = O(n1+1/k)

∀s, t ∈ V distG(s, t) ≤ distH(u, v) ≤ (2k − 1)distG(s, t)



Congested Clique

• Input graph is stored distributively 


• Synchronous, all-to-all communication


• Message size =  bits
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Congested Clique

• Input graph is stored distributively 


• Synchronous, all-to-all communication


• Message size =  bits


• Runtime = #communication rounds

O(log n)

• What is the runtime for spanners?



History
reference stretch #edges #rounds input type

Baswana, Sen 
2007 unweighted

Baswana, Sen 
2007 weighted

Parter, Yogev 
2018 unweighted

Biswas et al 
2021 weighted

2k − 1

2k − 1

2k − 1

k1+o(1)

O(n1+1/k + kn)

O(kn1+1/k)

O(n1+1/k log2 n)

O(n1+1/k log k)

O(k)

O(k)

O(log k)

logO(1) k

high runtimelarge space



History
reference stretch #edges #rounds input type

Dory et al 
2021 O(1) unweighted

Dory et al 
2021 O(1) weighted

Dory et al 
2021 O(1) weighted

O(k)

O(k)

O(k log n)

O(n1+1/k)

O(n1+1/k)

O(n1+1/k log n)

large stretch sub-opt space opt



Our results
reference stretch #edges #rounds input type
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Our results
reference stretch #edges #rounds input type

new O(1) unweighted

new O(1) weighted

new O(1) weighted

2k − 1

(1 + ϵ)(2k − 1)

2k − 1

O(n1+1/k)

O(kn1+1/k)

O(n1+1/k)

This talk

near-opt near-opt opt
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Degree Reduction
Goal: reduce maximum degree to 


1. Partition the vertex set  
      
     


2. Find a hitting set of size   
which dominates  [DFKL’21]


3. Find a -stretch spanner [DFKL’21] 
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k
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Degree Reduction
Goal: reduce maximum degree to 


1. Partition the vertex set  
      
     


2. Find a hitting set of size   
which dominates  [DFKL’21]


3. Find a -stretch spanner [DFKL’21] 
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

The rest of the graph 
has maximum degree 

at most n20/k
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Analysis of size & stretch

………

Spanner on the hitting set A


1. Assign high-deg vertices to 
neighbor hitting set vertices


2. Contract stars around hitting 
set vertices to single nodes


3. Build a 0.2k-stretch spanner 
on the contracted graph [DFKL’21]


Size analysis:
|A |1+O(1/k) = n(1−10/k)⋅(1+O(1/k)) = O(n)
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Analysis of size & stretch
Spanner on the hitting set A


1. Assign high-deg vertices to 
neighbor hitting set vertices


2. Contract stars around hitting 
set vertices to single nodes


3. Build a 0.2k-stretch spanner 
on the contracted graph [DFKL’21]


Stretch analysis: 
dist(s, t) ≤ 0.2k ⋅ 3 = 0.6k

s
t

Distance in  

original graph ≤ 0.6k



Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation



0.01k

Neighborhood Computation
Input: a graph with max-deg 


Output: compute the -neighborhood of each vertex

≤ n20/k

0.01k

0.0
1k

0.01k
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length ≤ 0.01k

Send all random edges to source vertex s in 1 round
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What is the probability that the s-t path is picked?


• Pr[st-path is picked] ≥ (1/deg)0.01k ≥ n−20/k⋅0.01k = n−0.2

length ≤ 0.01k

(distributed) 
random walk



Neighborhood Computation

s t

random 
edge

random 
edge

random 
edge

random 
edge

random 
edge

random 
edge

random 
edge

What is the probability that the s-t path is picked?


• 


• How to boost success probability?

Pr[st-path is picked] ≥ (1/deg)0.01k ≥ n−20/k⋅0.01k = n−0.2

length ≤ 0.01k
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Success probability?


Each path is found with 
probability at least 
1 − (1 − n−0.2)n0.3 > 1 − n−10



Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Success probability?


Each path is found with 
probability at least 
1 − (1 − n−0.2)n0.3 > 1 − n−10

Communication?


• Receive: 


• Send: 

O(n)

n0.3 ⋅ (deg)0.01k ≤ n0.5
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Parallel spanner simulation



Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015] 

1. Each vertex v takes a random value 



2. Define   
and 


3. Add  to spanner, if 

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1



Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015] 

1. Each vertex v takes a random value 
 

2. Define   
and 


3. Add  to spanner, if 

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

−r0

−r1

−r2

−r3

−r4

−r5

−r6



Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015] 

1. Each vertex v takes a random value 



2. Define   
and  

3. Add  to spanner, if 

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

−r0

−r1

−r2

−r3

−r4

−r5

−r6

  

shift0 (1) = dist(0,1) − r1

  shift0(5) = dist(0,5) − r5



Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015] 

1. Each vertex v takes a random value 



2. Define   
and 


3. Add  to spanner, if 

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

−r0

−r1

−r2

−r3

−r4

−r5

−r6

sh
ift u

+
1

Add these edges 
to spanner



Parallel Spanner Simulation
Simulating the parallel spanner 

• The radius of -area is at 
most k hops [MPVX’15]


• Our neighborhood subroutine only 
computes 0.01k ball

(shiftu + 1)
shift u

+ 1

 hops≤ k  hops

0.01k
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Parallel Spanner Simulation
Simulating the parallel spanner 

• The radius of -area is at 
most k hops [MPVX’15]


• Our neighborhood subroutine only 
computes 0.01k ball


• 100-round of communication can 
collect all relevant values of  
within the -area

(shiftu + 1)

shiftu(v)
(shiftu + 1)

shift u
+ 1



Further questions

Optimal spanners in weighted graphs in congested clique? 
In our work, either  stretch or  edges


1. Greedy spanner, highly sequential


2.  sequential runtime [Roditty & Zwick, 2004]

(1+ϵ)(2k − 1) kn1+1/k

O(kn2+1/k)


