Constant-Round Near-Optimal Spanners in Congested Clique

Shiri Chechik Tianyi Zhang

Graph Spanner

- Input:
$G=(V, E, \omega)$ an undirected weighted graph
- Output:
$H \subseteq G$ a subgraph of small size that approximately preserves distances

spanner

Graph Spanner

- Input:
$G=(V, E, \omega)$ an undirected weighted graph
- Output:
$H \subseteq G$ a subgraph of small size that approximately preserves distances
Multiplicative stretch:
- Size: $|H|=O\left(n^{1+1 / k}\right)$
- Approximation: $\forall s, t \in V, \operatorname{dist}_{G}(s, t) \leq \operatorname{dist}_{H}(u, v) \leq(2 k-1) \operatorname{dist}_{G}(s, t)$
- Optimal under the girth conjecture

Congested Clique

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size $=O(\log n)$ bits
- Runtime = \#communication rounds

Congested Clique

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size $=O(\log n)$ bits
- Runtime = \#communication rounds

Congested Clique

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size $=O(\log n)$ bits
- Runtime = \#communication rounds

Congested Clique

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size $=O(\log n)$ bits
- Runtime = \#communication rounds
- What is the runtime for spanners?

History

reference	stretch	\#edges	\#rounds	input type
Baswana, Sen 2007	$2 k-1$	$O\left(n^{1+1 / k}+k n\right)$	$O(k)$	unweighted
Baswana, Sen 2007	$2 k-1$	$O\left(k n^{1+1 / k)}\right.$	$O(k)$	weighted
Parter, Yogev 2018	$2 k-1$	$O\left(n^{1+1 / k} \log ^{2} n\right)$	$O(\log k)$	unweighted
Biswas et al 2021	$k^{1+o(1)}$	$O\left(n^{1+1 / k} \log k\right)$	$\log O(1) k$	weighted

History

reference	stretch	\#edges	\#rounds	input type
Dory et al 2021	$O(k)$	$O\left(n^{1+1 / k}\right)$	$O(1)$	unweighted
Dory et al 2021	$O(k)$	$O\left(n^{1+1 / k} \log n\right)$	$O(1)$	weighted
Dory et al 2021	$O(k \log n)$	$O\left(n^{1+1 / k}\right)$	$O(1)$	weighted

Our results

reference	stretch	\#edges	\#rounds	input type
new	$2 k-1$	$O\left(n^{1+1 / k}\right)$	$O(1)$	unweighted
new	$(1+\epsilon)(2 k-1)$	$O\left(n^{1+1 / k}\right)$	$O(1)$	weighted
new	$2 k-1$	$O\left(k n^{1+1 / k}\right)$	$O(1)$	weighted

Our results

This talk

reference	stretch	\#edges	\#rounds	input type
new	$2 k-1$	$O\left(n^{1+1 / k}\right)$	$O(1)$	unweighted
new	$(1+\epsilon)(2 k-1)$	$O\left(n^{1+1 / k}\right)$	$O(1)$	weighted
new	$2 k-1$	$O\left(k n^{1+1 / k}\right)$	$O(1)$	weighted
	near-opt	near-opt	opt	

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

Outline of main algorithm

Neighborhood computation

Parallel spanner simulation

Degree Reduction

Goal: reduce maximum degree to $n^{20 / k}$

1. Partition the vertex set $V=V_{\mathrm{hi}} \cup V_{\mathrm{lo}}$

$$
\begin{aligned}
& V_{\mathrm{hi}}=\left\{v \mid \operatorname{deg}(v)>n^{20 / k}\right\} \\
& V_{\mathrm{lo}}=\left\{v \mid \operatorname{deg}(v) \leq n^{20 / k}\right\}
\end{aligned}
$$

2. Find a hitting set of size $n^{1-10 / k}$ which dominates $V_{\text {hi }}$ [DFKL'21]
3. Find a $0.2 k$-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Goal: reduce maximum degree to $n^{20 / k}$

1. Partition the vertex set $V=V_{\mathrm{hi}} \cup V_{\mathrm{lo}}$

$$
\begin{aligned}
& V_{\mathrm{hi}}=\left\{v \mid \operatorname{deg}(v)>n^{20 / k}\right\} \\
& V_{\mathrm{lo}}=\left\{v \mid \operatorname{deg}(v) \leq n^{20 / k}\right\}
\end{aligned}
$$

2. Find a hitting set of size $n^{1-10 / k}$ which dominates $V_{\text {hi }}$ [DFKL'21]
3. Find a $0.2 k$-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Goal: reduce maximum degree to $n^{20 / k}$

1. Partition the vertex set $V=V_{\mathrm{hi}} \cup V_{\mathrm{lo}}$

$$
\begin{aligned}
& V_{\mathrm{hi}}=\left\{v \mid \operatorname{deg}(v)>n^{20 / k}\right\} \\
& V_{\mathrm{lo}}=\left\{v \mid \operatorname{deg}(v) \leq n^{20 / k}\right\}
\end{aligned}
$$

2. Find a hitting set of size $n^{1-10 / k}$ which dominates $V_{\text {hi }}$ [DFKL'21]
3. Find a $0.2 k$-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Goal: reduce maximum degree to $n^{20 / k}$

1. Partition the vertex set $V=V_{\mathrm{hi}} \cup V_{\mathrm{lo}}$

$$
\begin{aligned}
V_{\mathrm{hi}} & =\left\{v \mid \operatorname{deg}(v)>n^{20 / k}\right\} \\
V_{\mathrm{lo}} & =\left\{v \mid \operatorname{deg}(v) \leq n^{20 / k}\right\}
\end{aligned}
$$

2. Find a hitting set of size $n^{1-10 / k}$ which dominates $V_{\text {hi }}$ [DFKL'21]
3. Find a $0.2 k$-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Goal: reduce maximum degree to $n^{20 / k}$

1. Partition the vertex set $V=V_{\mathrm{hi}} \cup V_{\mathrm{lo}}$

$$
\begin{aligned}
& V_{\mathrm{hi}}=\left\{v \mid \operatorname{deg}(v)>n^{20 / k}\right\} \\
& V_{\mathrm{lo}}=\left\{v \mid \operatorname{deg}(v) \leq n^{20 / k}\right\}
\end{aligned}
$$

2. Find a hitting set of size $n^{1-10 / k}$ which dominates $V_{\text {hi }}$ [DFKL'21]
3. Find a $0.2 k$-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Goal: reduce maximum degree to $n^{20 / k}$

1. Partition the vertex set $V=V_{\mathrm{hi}} \cup V_{\mathrm{lo}}$

$$
\begin{aligned}
& V_{\mathrm{hi}}=\left\{v \mid \operatorname{deg}(v)>n^{20 / k}\right\} \\
& V_{\mathrm{lo}}=\left\{v \mid \operatorname{deg}(v) \leq n^{20 / k}\right\}
\end{aligned}
$$

The rest of the graph has maximum degree at most $n^{20 / k}$
2. Find a hitting set of size $n^{1-10 / k}$ which dominates $V_{\text {hi }}$ [DFKL'21]
3. Find a $0.2 k$-stretch spanner [DFKL'21] on a contracted graph

Analysis of size \& stretch

Spanner on the hitting set A

Analysis of size \& stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices

Analysis of size \& stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices
2. Contract stars around hitting set vertices to single nodes

Analysis of size \& stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices
2. Contract stars around hitting set vertices to single nodes
3. Build a 0.2 k -stretch spanner on the contracted graph [DFKL21]

Analysis of size \& stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices
2. Contract stars around hitting set vertices to single nodes
3. Build a 0.2 k -stretch spanner on the contracted graph [DFKL21]

Size analysis:

$$
|A|^{1+O(1 / k)}=n^{(1-10 / k) \cdot(1+O(1 / k))}=O(n)
$$

Analysis of size \& stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices
2. Contract stars around hitting set vertices to single nodes
3. Build a 0.2 k -stretch spanner on the contracted graph [DFKL'21]

Stretch analysis:

$$
\operatorname{dist}(s, t) \leq 0.2 k \cdot 3=0.6 k
$$

Analysis of size \& stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices
2. Contract stars around hitting set vertices to single nodes
3. Build a 0.2 k -stretch spanner on the contracted graph [DFKL'21]

Stretch analysis:

$$
\operatorname{dist}(s, t) \leq 0.2 k \cdot 3=0.6 k
$$

Outline of main algorithm

Parallel spanner simulation

Neighborhood Computation

Input: a graph with max-deg $\leq n^{20 / k}$
Output: compute the $0.01 k$-neighborhood of each vertex

Neighborhood Computation

Neighborhood Computation

Neighborhood Computation

pick a random edge

Neighborhood Computation

Neighborhood Computation

Send all random edges to source vertex sin 1 round

Neighborhood Computation

What is the probability that the s-t path is picked?

Neighborhood Computation

What is the probability that the s-t path is picked?

- $\operatorname{Pr}[$ st-path is picked $] \geq(1 / \mathrm{deg})^{0.01 k} \geq n^{-20 / k \cdot 0.01 k}=n^{-0.2}$

Neighborhood Computation

What is the probability that the s-t path is picked?

- $\operatorname{Pr}[$ st-path is picked $] \geq(1 / \mathrm{deg})^{0.01 k} \geq n^{-20 / k \cdot 0.01 k}=n^{-0.2}$
- How to boost success probability?

Boosting by replication

$\ldots00000$

Boosting by replication

Success probability?
Each path is found with probability at least $1-\left(1-n^{-0.2}\right)^{n^{0.3}}>1-n^{-10}$

Communication?

- Receive: $O(n)$
- Send:

$$
n^{0.3} \cdot(\operatorname{deg})^{0.01 k} \leq n^{0.5}
$$

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

Parallel Spanner Simulation

A PRAM spanner algorithm

0 [Miller, Peng, Vladu, Xu, 2015]

1. Each vertex v takes a random value

$$
0
$$

0 $r_{v} \sim \exp [\ln (10 n) / k]$
2. Define $\operatorname{shift}_{u}(v)=\operatorname{dist}(u, v)-r_{v}$ 0

0 and $\operatorname{shift}_{u}=\min _{v \in V}\left\{\operatorname{shift}_{u}(v)\right\}$
3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u}+1$

Parallel Spanner Simulation

A PRAM spanner algorithm

[Miller, Peng, Vladu, Xu, 2015]

1. Each vertex v takes a random value $r_{v} \sim \exp [\ln (10 n) / k]$
2. Define $\operatorname{shift}_{u}(v)=\operatorname{dist}(u, v)-r_{v}$ and $\operatorname{shift}_{u}=\min _{v \in V}\left\{\operatorname{shift}_{u}(v)\right\}$
3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u}+1$

$$
-r_{4}
$$

0

$$
-r_{0}
$$

0
$-r_{5}$
0

Parallel Spanner Simulation

A PRAM spanner algorithm

 [Miller, Peng, Vladu, Xu, 2015]1. Each vertex v takes a random value $r_{v} \sim \exp [\ln (10 n) / k]$
2. Define $\operatorname{shift}_{u}(v)=\operatorname{dist}(u, v)-r_{v}$ and $\operatorname{shift}_{u}=\min _{v \in V}\left\{\operatorname{shift}_{u}(v)\right\}$
3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u}+1$

Parallel Spanner Simulation

A PRAM spanner algorithm

 [Miller, Peng, Vladu, Xu, 2015]1. Each vertex v takes a random value $r_{v} \sim \exp [\ln (10 n) / k]$
2. Define $\operatorname{shift}_{u}(v)=\operatorname{dist}(u, v)-r_{v}$ and $\operatorname{shift}_{u}=\min _{v \in V}\left\{\operatorname{shift}_{u}(v)\right\}$
3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u}+1$

Parallel Spanner Simulation

Simulating the parallel spanner

- The radius of $\left(\operatorname{shift}_{u}+1\right)$-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01 k ball

Parallel Spanner Simulation

Simulating the parallel spanner

- The radius of $\left(\operatorname{shift}_{u}+1\right)$-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01 k ball
- 100-round of communication can collect all relevant values of $\operatorname{shift}_{u}(v)$ within the ($\operatorname{shift}_{u}+1$)-area

Parallel Spanner Simulation

Simulating the parallel spanner

- The radius of $\left(\operatorname{shift}_{u}+1\right)$-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01 k ball
- 100-round of communication can collect all relevant values of $\operatorname{shift}_{u}(v)$ within the ($\operatorname{shift}_{u}+1$)-area

Parallel Spanner Simulation

Simulating the parallel spanner

- The radius of $\left(\right.$ shift $\left._{u}+1\right)$-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01 k ball
- 100-round of communication can collect all relevant values of $\operatorname{shift}_{u}(v)$ within the ($\operatorname{shift}_{u}+1$)-area

Further questions

Optimal spanners in weighted graphs in congested clique? In our work, either $(1+\epsilon)(2 k-1)$ stretch or $k n^{1+1 / k}$ edges

1. Greedy spanner, highly sequential
2. $O\left(k n^{2+1 / k}\right)$ sequential runtime [Roditty \& Zwick, 2004]
