
Constant-Round Near-Optimal Spanners
in Congested Clique

Shiri Chechik Tianyi Zhang

Graph Spanner
• Input:  

 an undirected weighted graph

• Output:  
 a subgraph of small size that approximately preserves distances

G = (V, E, ω)

H ⊆ G

spanner

Graph Spanner
• Input:  

 an undirected weighted graph

• Output:  
 a subgraph of small size that approximately preserves distances

G = (V, E, ω)

H ⊆ G

Multiplicative stretch:

• Size:

• Approximation: ,

• Optimal under the girth conjecture

|H | = O(n1+1/k)

∀s, t ∈ V distG(s, t) ≤ distH(u, v) ≤ (2k − 1)distG(s, t)

Congested Clique

• Input graph is stored distributively

• Synchronous, all-to-all communication

• Message size = bits

• Runtime = #communication rounds

O(log n)

Congested Clique

• Input graph is stored distributively

• Synchronous, all-to-all communication

• Message size = bits

• Runtime = #communication rounds

O(log n)

Congested Clique

• Input graph is stored distributively

• Synchronous, all-to-all communication

• Message size = bits

• Runtime = #communication rounds

O(log n)

 bits
O(log n)

 bits
O

(log
n)

 bits
O

(log
n)

 bits

O
(log n)

 bits

O(log n)

Congested Clique

• Input graph is stored distributively

• Synchronous, all-to-all communication

• Message size = bits

• Runtime = #communication rounds

O(log n)

• What is the runtime for spanners?

History
reference stretch #edges #rounds input type

Baswana, Sen
2007 unweighted

Baswana, Sen
2007 weighted

Parter, Yogev
2018 unweighted

Biswas et al
2021 weighted

2k − 1

2k − 1

2k − 1

k1+o(1)

O(n1+1/k + kn)

O(kn1+1/k)

O(n1+1/k log2 n)

O(n1+1/k log k)

O(k)

O(k)

O(log k)

logO(1) k

high runtimelarge space

History
reference stretch #edges #rounds input type

Dory et al
2021 O(1) unweighted

Dory et al
2021 O(1) weighted

Dory et al
2021 O(1) weighted

O(k)

O(k)

O(k log n)

O(n1+1/k)

O(n1+1/k)

O(n1+1/k log n)

large stretch sub-opt space opt

Our results
reference stretch #edges #rounds input type

new O(1) unweighted

new O(1) weighted

new O(1) weighted

2k − 1

(1 + ϵ)(2k − 1)

2k − 1

O(n1+1/k)

O(kn1+1/k)

O(n1+1/k)

near-opt near-opt opt

Our results
reference stretch #edges #rounds input type

new O(1) unweighted

new O(1) weighted

new O(1) weighted

2k − 1

(1 + ϵ)(2k − 1)

2k − 1

O(n1+1/k)

O(kn1+1/k)

O(n1+1/k)

This talk

near-opt near-opt opt

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

Degree Reduction
Goal: reduce maximum degree to

1. Partition the vertex set  
  

2. Find a hitting set of size  
which dominates [DFKL’21]

3. Find a -stretch spanner [DFKL’21]
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

Degree Reduction
Goal: reduce maximum degree to

1. Partition the vertex set  
  

2. Find a hitting set of size  
which dominates [DFKL’21]

3. Find a -stretch spanner [DFKL’21]
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

high-low degree threshold

Degree Reduction
Goal: reduce maximum degree to

1. Partition the vertex set  
  

2. Find a hitting set of size  
which dominates [DFKL’21]

3. Find a -stretch spanner [DFKL’21]
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

Degree Reduction
Goal: reduce maximum degree to

1. Partition the vertex set  
  

2. Find a hitting set of size  
which dominates [DFKL’21]

3. Find a -stretch spanner [DFKL’21]
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

Degree Reduction
Goal: reduce maximum degree to

1. Partition the vertex set  
  

2. Find a hitting set of size  
which dominates [DFKL’21]

3. Find a -stretch spanner [DFKL’21]
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

Find a 0.2k-stretch
spanner on the

contracted graph

Degree Reduction
Goal: reduce maximum degree to

1. Partition the vertex set  
  

2. Find a hitting set of size  
which dominates [DFKL’21]

3. Find a -stretch spanner [DFKL’21]
on a contracted graph

n20/k

V = Vhi ∪ Vlo
Vhi = {v ∣ deg(v) > n20/k}
Vlo = {v ∣ deg(v) ≤ n20/k}

n1−10/k

Vhi

0.2k

The rest of the graph
has maximum degree

at most n20/k

Analysis of size & stretch

………

Spanner on the hitting set A

Analysis of size & stretch
Spanner on the hitting set A

1. Assign high-deg vertices to
neighbor hitting set vertices

………

Analysis of size & stretch
Spanner on the hitting set A

1. Assign high-deg vertices to
neighbor hitting set vertices

2. Contract stars around hitting
set vertices to single nodes

………

Analysis of size & stretch

………

Spanner on the hitting set A

1. Assign high-deg vertices to
neighbor hitting set vertices

2. Contract stars around hitting
set vertices to single nodes

3. Build a 0.2k-stretch spanner
on the contracted graph [DFKL’21]

Analysis of size & stretch

………

Spanner on the hitting set A

1. Assign high-deg vertices to
neighbor hitting set vertices

2. Contract stars around hitting
set vertices to single nodes

3. Build a 0.2k-stretch spanner
on the contracted graph [DFKL’21]

Size analysis:
|A |1+O(1/k) = n(1−10/k)⋅(1+O(1/k)) = O(n)

Analysis of size & stretch
Spanner on the hitting set A

1. Assign high-deg vertices to
neighbor hitting set vertices

2. Contract stars around hitting
set vertices to single nodes

3. Build a 0.2k-stretch spanner
on the contracted graph [DFKL’21]

Stretch analysis: 
dist(s, t) ≤ 0.2k ⋅ 3 = 0.6k

s
t

Distance in

contracted graph ≤ 0.2k

Analysis of size & stretch
Spanner on the hitting set A

1. Assign high-deg vertices to
neighbor hitting set vertices

2. Contract stars around hitting
set vertices to single nodes

3. Build a 0.2k-stretch spanner
on the contracted graph [DFKL’21]

Stretch analysis: 
dist(s, t) ≤ 0.2k ⋅ 3 = 0.6k

s
t

Distance in

original graph ≤ 0.6k

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

0.01k

Neighborhood Computation
Input: a graph with max-deg

Output: compute the -neighborhood of each vertex

≤ n20/k

0.01k

0.0
1k

0.01k

Neighborhood Computation

s t

length ≤ 0.01k

Neighborhood Computation

s t

length ≤ 0.01k

Neighborhood Computation

s t

pick a random edge

length ≤ 0.01k

Neighborhood Computation

s t

pick a random edge

random edge

random edge

random
edge

random edge

random
edge

length ≤ 0.01k

Neighborhood Computation

s t

pick a random edge

random edge

random edge

random
edge

random edge

random
edge

length ≤ 0.01k

Send all random edges to source vertex s in 1 round

Neighborhood Computation

s t

random
edge

random
edge

random
edge

random
edge

random
edge

random
edge

random
edge

What is the probability that the s-t path is picked?

length ≤ 0.01k

Neighborhood Computation

s t

random
edge

random
edge

random
edge

random
edge

random
edge

random
edge

random
edge

What is the probability that the s-t path is picked?

• Pr[st-path is picked] ≥ (1/deg)0.01k ≥ n−20/k⋅0.01k = n−0.2

length ≤ 0.01k

(distributed)
random walk

Neighborhood Computation

s t

random
edge

random
edge

random
edge

random
edge

random
edge

random
edge

random
edge

What is the probability that the s-t path is picked?

•

• How to boost success probability?

Pr[st-path is picked] ≥ (1/deg)0.01k ≥ n−20/k⋅0.01k = n−0.2

length ≤ 0.01k

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

………..……….. ………..

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

………..……….. ………..

send random
incident edges

send random
incident edges

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Success probability?

Each path is found with
probability at least
1 − (1 − n−0.2)n0.3 > 1 − n−10

Boosting by replication
size = n0.3 size = n0.3 size = n0.3

Success probability?

Each path is found with
probability at least
1 − (1 − n−0.2)n0.3 > 1 − n−10

Communication?

• Receive:

• Send:

O(n)

n0.3 ⋅ (deg)0.01k ≤ n0.5

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015]

1. Each vertex v takes a random value

2. Define
and

3. Add to spanner, if

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015]

1. Each vertex v takes a random value

2. Define
and

3. Add to spanner, if

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

−r0

−r1

−r2

−r3

−r4

−r5

−r6

Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015]

1. Each vertex v takes a random value

2. Define
and

3. Add to spanner, if

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

−r0

−r1

−r2

−r3

−r4

−r5

−r6

shift0 (1) = dist(0,1) − r1

 shift0(5) = dist(0,5) − r5

Parallel Spanner Simulation
A PRAM spanner algorithm 
[Miller, Peng, Vladu, Xu, 2015]

1. Each vertex v takes a random value

2. Define
and

3. Add to spanner, if

rv ∼ exp[ln(10n)/k]

shiftu(v) = dist(u, v) − rv
shiftu = min

v∈V
{shiftu(v)}

(u, w)
shiftu(v) ≤ shiftu + 1

−r0

−r1

−r2

−r3

−r4

−r5

−r6

sh
ift u

+
1

Add these edges
to spanner

Parallel Spanner Simulation
Simulating the parallel spanner

• The radius of -area is at
most k hops [MPVX’15]

• Our neighborhood subroutine only
computes 0.01k ball

(shiftu + 1)
shift u

+ 1

 hops≤ k hops

0.01k

Parallel Spanner Simulation
Simulating the parallel spanner

• The radius of -area is at
most k hops [MPVX’15]

• Our neighborhood subroutine only
computes 0.01k ball

• 100-round of communication can
collect all relevant values of
within the -area

(shiftu + 1)

shiftu(v)
(shiftu + 1)

shift u
+ 1

Parallel Spanner Simulation
Simulating the parallel spanner

• The radius of -area is at
most k hops [MPVX’15]

• Our neighborhood subroutine only
computes 0.01k ball

• 100-round of communication can
collect all relevant values of
within the -area

(shiftu + 1)

shiftu(v)
(shiftu + 1)

shift u
+ 1

Parallel Spanner Simulation
Simulating the parallel spanner

• The radius of -area is at
most k hops [MPVX’15]

• Our neighborhood subroutine only
computes 0.01k ball

• 100-round of communication can
collect all relevant values of
within the -area

(shiftu + 1)

shiftu(v)
(shiftu + 1)

shift u
+ 1

Further questions

Optimal spanners in weighted graphs in congested clique? 
In our work, either stretch or edges

1. Greedy spanner, highly sequential

2. sequential runtime [Roditty & Zwick, 2004]

(1+ϵ)(2k − 1) kn1+1/k

O(kn2+1/k)

