Constant-Round Near-Optimal Spanners in Congested Clique

Shiri Chechik

Tianyi Zhang

- Input: $G = (V, E, \omega)$ an undirected weighted graph
- Output:

Graph Spanner

 $H \subseteq G$ a subgraph of small size that approximately preserves distances

- Input: $G = (V, E, \omega)$ an undirected weighted graph
- Output:

Multiplicative stretch:

- Size: $|H| = O(n^{1+1/k})$
- Optimal under the girth conjecture

Graph Spanner

 $H \subseteq G$ a subgraph of small size that approximately preserves distances

• Approximation: $\forall s, t \in V$, $\operatorname{dist}_G(s, t) \leq \operatorname{dist}_H(u, v) \leq (2k - 1)\operatorname{dist}_G(s, t)$

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size = $O(\log n)$ bits
- Runtime = #communication rounds

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size = $O(\log n)$ bits
- Runtime = #communication rounds

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size = $O(\log n)$ bits
- Runtime = #communication rounds

- Input graph is stored distributively
- Synchronous, all-to-all communication
- Message size = $O(\log n)$ bits
- Runtime = #communication rounds
- What is the runtime for spanners?

History

reference	stretch	#edges	#rounds	input type
Baswana, Sen 2007	2 <i>k</i> - 1	$O(n^{1+1/k} + kn)$	<i>O</i> (<i>k</i>)	unweighted
Baswana, Sen 2007	2 <i>k</i> – 1	$O(kn^{1+1/k})$	<i>O</i> (<i>k</i>)	weighted
Parter, Yogev 2018	2 <i>k</i> – 1	$O(n^{1+1/k}\log^2 n)$	$O(\log k)$	unweighted
Biswas et al 2021	$k^{1+o(1)}$	$O(n^{1+1/k}\log k)$	$\log^{O(1)} k$	weighted

large space high runtime

History

reference	stretch	#edges	#rounds	input type
Dory et al 2021	<i>O</i> (<i>k</i>)	$O(n^{1+1/k})$	O(1)	unweighted
Dory et al 2021	<i>O</i> (<i>k</i>)	$O(n^{1+1/k}\log n)$	O(1)	weighted
Dory et al 2021	$O(k \log n)$	$O(n^{1+1/k})$	O(1)	weighted

large stretch sub-opt space

opt

reference	stretch	#edges	#rounds	input type
new	2 <i>k</i> – 1	$O(n^{1+1/k})$	O(1)	unweighted
new	$(1 + \epsilon)(2k - 1)$	$O(n^{1+1/k})$	O(1)	weighted
new	2 <i>k</i> – 1	$O(kn^{1+1/k})$	O(1)	weighted

Our results

near-opt

opt

near-opt

This talk

reference	stretch	#edges	#rounds	input type
new	2 <i>k</i> – 1	$O(n^{1+1/k})$	O(1)	unweighted
new	$(1 + \epsilon)(2k - 1)$	$O(n^{1+1/k})$	O(1)	weighted
new	2 <i>k</i> – 1	$O(kn^{1+1/k})$	O(1)	weighted

Our results

near-opt

opt

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

Outline of main algorithm

Parallel spanner simulation

Degree reduction

Neighborhood computation

- 1. Partition the vertex set $V = V_{hi} \cup V_{lo}$ $V_{hi} = \{v \mid deg(v) > n^{20/k}\}$ $V_{|0} = \{v \mid \deg(v) \le n^{20/k}\}$
- 2. Find a hitting set of size $n^{1-10/k}$ which dominates V_{hi} [DFKL'21]
- 3. Find a 0.2k-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

- 1. Partition the vertex set $V = V_{hi} \cup V_{lo}$ $V_{hi} = \{v \mid deg(v) > n^{20/k}\}$ $V_{|0} = \{v \mid \deg(v) \le n^{20/k}\}$
- 2. Find a hitting set of size $n^{1-10/k}$ which dominates V_{hi} [DFKL'21]
- 3. Find a 0.2k-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

high-low degree threshold

- 1. Partition the vertex set $V = V_{hi} \cup V_{lo}$ $V_{hi} = \{v \mid deg(v) > n^{20/k}\}$ $V_{|0} = \{v \mid \deg(v) \le n^{20/k}\}$
- 2. Find a hitting set of size $n^{1-10/k}$ which dominates V_{hi} [DFKL'21]
- 3. Find a 0.2k-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

- 1. Partition the vertex set $V = V_{hi} \cup V_{lo}$ $V_{hi} = \{v \mid deg(v) > n^{20/k}\}$ $V_{\text{IO}} = \{v \mid \deg(v) \le n^{20/k}\}$
- 2. Find a hitting set of size $n^{1-10/k}$ which dominates V_{hi} [DFKL'21]
- 3. Find a 0.2*k*-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Goal: reduce maximum degree to n^{20/k}

- 1. Partition the vertex set $V = V_{hi} \cup V_{lo}$ $V_{hi} = \{v \mid \deg(v) > n^{20/k}\}$ $V_{|0} = \{v \mid \deg(v) \le n^{20/k}\}$
- 2. Find a hitting set of size $n^{1-10/k}$ which dominates V_{hi} [DFKL'21]
- 3. Find a 0.2k-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

Find a 0.2k-stretch spanner on the contracted graph

Goal: reduce maximum degree to n^{20/k}

- 1. Partition the vertex set $V = V_{hi} \cup V_{lo}$ $V_{hi} = \{v \mid \deg(v) > n^{20/k}\}$ $V_{\text{IO}} = \{v \mid \deg(v) \le n^{20/k}\}$
- 2. Find a hitting set of size $n^{1-10/k}$ which dominates V_{hi} [DFKL'21]
- 3. Find a 0.2k-stretch spanner [DFKL'21] on a contracted graph

Degree Reduction

The rest of the graph has maximum degree at most $n^{20/k}$

Spanner on the hitting set A

Analysis of size & stretch

Spanner on the hitting set A

1. Assign high-deg vertices to neighbor hitting set vertices

Analysis of size & stretch

Spanner on the hitting set A

- 1. Assign high-deg vertices to neighbor hitting set vertices
- 2. Contract stars around hitting set vertices to single nodes

Analysis of size & stretch

Spanner on the hitting set A

- 1. Assign high-deg vertices to neighbor hitting set vertices
- 2. Contract stars around hitting set vertices to single nodes
- 3. Build a 0.2k-stretch spanner on the contracted graph [DFKL'21]

Analysis of size & stretch **Size analysis:**

Spanner on the hitting set A

- 1. Assign high-deg vertices to neighbor hitting set vertices
- 2. Contract stars around hitting set vertices to single nodes
- 3. Build a 0.2k-stretch spanner on the contracted graph [DFKL'21]

 $|A|^{1+O(1/k)} = n^{(1-10/k)\cdot(1+O(1/k))} = O(n)$

Analysis of size & stretch S **Distance** in contracted graph $\leq 0.2k$ **Stretch analysis:**

Spanner on the hitting set A

- 1. Assign high-deg vertices to neighbor hitting set vertices
- 2. Contract stars around hitting set vertices to single nodes
- 3. Build a 0.2k-stretch spanner on the contracted graph [DFKL'21]

 $dist(s, t) \le 0.2k \cdot 3 = 0.6k$

Analysis of size & stretch S **Distance** in original graph $\leq 0.6k$ **Stretch analysis:**

Spanner on the hitting set A

- 1. Assign high-deg vertices to neighbor hitting set vertices
- 2. Contract stars around hitting set vertices to single nodes
- 3. Build a 0.2k-stretch spanner on the contracted graph [DFKL'21]

 $dist(s, t) \le 0.2k \cdot 3 = 0.6k$

Outline of main algorithm

Parallel spanner simulation

Degree reduction

Neighborhood computation

Input: a graph with max-deg $\leq n^{20/k}$

Output: compute the 0.01k-neighborhood of each vertex

pick a random edge

Send all random edges to source vertex s in 1 round

What is the probability that the s-t path is picked?

What is the **probability** that the s-t path is picked?

• $\Pr[\text{st-path is picked}] \ge (1)$

$$(\deg)^{0.01k} \ge n^{-20/k \cdot 0.01k} = n^{-0.2}$$

(distributed) random walk

What is the **probability** that the s-t path is picked?

- How to boost success probability?

• $\Pr[\text{st-path is picked}] \ge (1/\deg)^{0.01k} \ge n^{-20/k \cdot 0.01k} = n^{-0.2}$

Success probability?

Each path is found with probability at least

Success probability?

Each path is found with probability at least $1 - (1 - n^{-0.2})^{n^{0.3}} > 1 - n^{-10}$

• Receive: O(n)

• Send: $n^{0.3} \cdot (\deg)^{0.01k} \le n^{0.5}$

Outline of main algorithm

Degree reduction

Neighborhood computation

Parallel spanner simulation

<u>A PRAM spanner algorithm</u> [Miller, Peng, Vladu, Xu, 2015]

- 1. Each vertex v takes a random value $r_v \sim \exp[\ln(10n)/k]$
- 2. Define shift_u(v) = dist(u, v) r_v and shift_u = min{shift_u(v)} $v \in V$
- 3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u} + 1$

<u>A PRAM spanner algorithm</u> [Miller, Peng, Vladu, Xu, 2015]

- 1. Each vertex v takes a random value $r_v \sim \exp[\ln(10n)/k]$
- 2. Define shift_u(v) = dist(u, v) r_v and shift_u = min{shift_u(v)} $v \in V$
- 3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u} + 1$

A PRAM spanner algorithm [Miller, Peng, Vladu, Xu, 2015]

- 1. Each vertex v takes a random value $r_v \sim \exp[\ln(10n)/k]$
- 2. Define $shift_u(v) = dist(u, v) r_v$ and shift_u = min{shift_u(v)} $v \in V$
- 3. Add (u, w) to spanner, if $\operatorname{shift}_{u}(v) \leq \operatorname{shift}_{u} + 1$

Parallel Spanner Simulation $-r_3$ $-r_4$ $-r_0$ Add these edges Ο to spanner $-r_5$ $v \in V$ $-r_6$

<u>A PRAM spanner algorithm</u> [Miller, Peng, Vladu, Xu, 2015]

- 1. Each vertex v takes a random value $r_v \sim \exp[\ln(10n)/k]$
- 2. Define shift_u(v) = dist(u, v) r_v and shift_u = min{shift_u(v)}
- **3.** Add (u, w) to spanner, if $\text{shift}_{\mu}(v) \leq \text{shift}_{\mu} + 1$

- The radius of (shift_u + 1)-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01k ball

- The radius of (shift_u + 1)-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01k ball
- 100-round of communication can collect all relevant values of $shift_u(v)$ within the $(shift_u + 1)$ -area

- The radius of (shift_u + 1)-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01k ball
- 100-round of communication can collect all relevant values of $shift_u(v)$ within the $(shift_u + 1)$ -area

- The radius of (shift_u + 1)-area is at most k hops [MPVX'15]
- Our neighborhood subroutine only computes 0.01k ball
- 100-round of communication can collect all relevant values of $shift_u(v)$ within the $(shift_u + 1)$ -area

- 1. Greedy spanner, highly sequential
- 2. $O(kn^{2+1/k})$ sequential runtime [Roditty & Zwick, 2004]

Further questions

- Optimal spanners in weighted graphs in congested clique? In our work, either $(1+\epsilon)(2k-1)$ stretch or $kn^{1+1/k}$ edges