Near-Optimal Approximate Dual-Failure Replacement Paths

Shiri Chechik Tianyi Zhang
Tel Aviv University

Emergency Planning

Two-phase problem:

1. Preprocess the input graph
2. One/multiple links break, and recover info in the new graph

Costs:

1. Preprocessing time
2. Recovery time

Emergency Planning

Two-phase problem:

1. Preprocess the input graph
2. One/multiple links break, and recover info in the new graph

Costs:

1. Preprocessing time
2. Recovery time

Emergency Planning

Two-phase problem:

1. Preprocess the input graph
2. One/multiple links break, and recover info in the new graph

Costs:

1. Preprocessing time
2. Recovery time

Emergency Planning

Two-phase problem:

1. Preprocess the input graph
2. One/multiple links break, and recover info in the new graph

Costs:

1. Preprocessing time
2. Recovery time

Today's focus:

1. Recover shortest paths info
2. Precompute all answers, so recovery time is poly-log

Other settings:

1. Connectivity / reachability
2. Preprocessing vs. recovery

Replacement Path

- Weighted directed graph $G=(V, E, \omega)$, source \& terminal vertices
- For all $\leq f$ edges $F \subseteq E$, compute $\operatorname{dist}(s, t, G \backslash F)$

Replacement Path

- Weighted directed graph $G=(V, E, \omega)$, source \& terminal vertices
- For all $\leq f$ edges $F \subseteq E$, compute $\operatorname{dist}(s, t, G \backslash F)$
- Total size of output $\leq n^{f}$ (exercise: why not m^{f})
- Trivial algorithm takes time $m n^{f} \leq n^{f+2}$
- Main question: How to save the quadratic overhead?

Single-failure replacement paths

- Trivial algorithm takes cubic runtime $m n \leq n^{3}$
- [VW, 2010] showed this is the best possible under a widely believed conjecture
- $(1+\epsilon)$-approximations in runtime $m \leq n^{2}$ [Bernstein, 2010]
- Corollary: $(1+\epsilon)$-approximations for f-failures in $m n^{f-1} \leq n^{f+1}$ time

Dual-failure replacement paths

- Optimal exact algorithm in runtime n^{3} [VWX, 2022]
- Corollary: exact solutions for f-failures in n^{f+1} time when $f \geq 2$

Our result [CZ, 2024]

- $(1+\epsilon)$-approximations in runtime n^{2}, optimal runtime
- Corollary: $(1+\epsilon)$-approximations for f-failures in n^{f} time when $f \geq 2$
- Open: exact solutions for 3 -failures in n^{3} time?

Summary of results

	$f=1$	$f=2$	$f \geq 3$
Exact	n^{3} $[\mathrm{VW}, 2010]$	n^{3} $[\mathrm{VW}, 2022]$ $\mathrm{VW}, 2010]$	n^{f+1} $[\mathrm{VWX}, 2022]$
Approximate	n^{2} [Bernstein, 2010]	n^{2} New	n^{f} New

Different variants of RP (exact)

Special cases of single-failure RP

- Undirected RP in linear time [NPW, 2001]
- Unweighted RP in $m \sqrt{n}$ time [RZ, 2012]
- Small edge weights RP in $W n^{\omega}$ time [CN, 2020]

Single-failure single-source RP

- Unweighted single-source RP in $m \sqrt{n}$ time [CM, 2020]
- Small edge weights single-source RP in $W^{0.805} n^{2.496}$ time [GPWX, 2021]

:Single-failure all-pairs RP

- All-pairs RP in $W n^{2.58}$ time [GR, 2021]

Today's plan

- Review of single-failure approximate st-RP [Bernstein, 2010]
- Two main cases for dual-failure approximate st-RP
- Only one failure is on the st-path
- Both failures are on the st-path

Single-Failure Approx-RP [Bernstein'10]

Single-Failure RP

Single-Failure RP

Single-Failure RP

Single-Failure RP

- Single-failure RP = best detour avoiding intervals
- Compute the detours for all possible failures

Single-Failure RP

- Single-failure RP = best detour avoiding intervals
- Compute the detours for all possible failures

Single-Failure RP

- Single-failure RP = best detour avoiding intervals
- Compute the detours for all possible failures

Single-Failure RP

- Single-failure RP = best detour avoiding intervals
- Compute the detours for all possible failures

Progressive Dijkstra [Bern'10]

First idea:

Incre maintain all Dijkstra labels

1. Start with $G \backslash \pi$
2. add back π edge by edge
3. Update $d(v)$, but scan outedges of v iff $d(v)$ has decreased by $1-\epsilon$

Progressive Dijkstra [Bern'10]

First idea:

Incre maintain all Dijkstra labels

1. Start with $G \backslash \pi$
2. add back π edge by edge
3. Update $d(v)$, but scan outedges of v iff $d(v)$ has decreased by $1-\epsilon$

Progressive Dijkstra [Bern'10]

First idea:

Incre maintain all Dijkstra labels

1. Start with $G \backslash \pi$
2. add back π edge by edge
3. Update $d(v)$, but scan outedges of v iff $d(v)$ has decreased by $1-\epsilon$

Progressive Dijkstra [Bern'10]

First idea:

Incre maintain all Dijkstra labels

1. Start with $G \backslash \pi$
2. add back π edge by edge
3. Update $d(v)$, but scan outedges of v iff $d(v)$ has decreased by $1-\epsilon$

Progressive Dijkstra [Bern'10]

First idea:

Incre maintain all Dijkstra labels

1. Start with $G \backslash \pi$
2. add back π edge by edge
3. Update $d(v)$, but scan outedges of v iff $d(v)$ has decreased by $1-\epsilon$

Runtime:

- Each out-neighbor scanned $\log _{1+\epsilon}(n W)$ times
- Total runtime $=n^{2} \log _{1+\epsilon}(n W)$
this node if $\mathrm{d}(\mathrm{v})$ does not decrease
by $1-\epsilon$

Dijkstra finds a new path

Progressive Dijkstra [Bern'10]

Approximation error:
 - If $d(v)$ doesn't decrease by $1-\epsilon$, then yellow $<(1+\epsilon) \times$ red

Progressive Dijkstra [Bern'10]

Approximation error:

- If $d(v)$ doesn't decrease by $1-\epsilon$, then yellow $<(1+\epsilon) \times$ red
- However, previous iterations only know sv-path

Progressive Dijkstra [Bern'10]

Approximation error:

- If $d(v)$ doesn't decrease by $1-\epsilon$, then yellow $<(1+\epsilon) \times$ red
- However, previous iterations only know sv-path
- vw-path could be intercepted by even earlier iterations; that is, blue $<(1+\epsilon) \times$ yellow

Progressive Dijkstra [Bern'10]

Approximation error:

- If $d(v)$ doesn't decrease by $1-\epsilon$, then yellow $<(1+\epsilon) \times$ red
- However, previous iterations only know sv-path
- vw-path could be intercepted by even earlier iterations; that is, blue $<(1+\epsilon) \times$ yellow
- $(1+\epsilon)$ factors could accumulate
i-th earlier blue $<(1+\epsilon)^{i} \times$ red

Progressive Dijkstra [Bern'10]

Progressive Dijkstra [Bern'10]

Main issue:				
- $(1+\epsilon)$ factors could accumulate	1-iter		$n / 2$	O
Second idea:	2-iter	0		O
- Run $\log n$ iterations of Dijkstra				
- In the i-th iteration, begin with graph $G \backslash \pi$, and add $n / 2^{i}$ edges each time	i-iter	$\begin{aligned} & 0 \\ & \mathrm{~s} \end{aligned}$		O
- Update Dijkstra labels lazily				

Progressive Dijkstra [Bern'10]

Progressive Dijkstra [Bern'10]

Main issue:

- $(1+\epsilon)$ factors could accumulate

Second idea:

- Run $\log n$ iterations of Dijkstra
- In the i-th iteration, begin with graph $G \backslash \pi$, and add $n / 2^{i}$ edges each time
- Update Dijkstra labels lazily

Progressive Dijkstra [Bern'10]

Main issue:

- $(1+\epsilon)$ factors could accumulate

Second idea:

- Run $\log n$ iterations of Dijkstra
- In the i-th iteration, begin with graph $G \backslash \pi$, and add $n / 2^{i}$ edges each time
- Update Dijkstra labels lazily

Progressive Dijkstra [Bern'10]

Main issue:

- $(1+\epsilon)$ factors could accumulate

Second idea:

- Run $\log n$ iterations of Dijkstra
- In the i-th iteration, begin with graph $G \backslash \pi$, and add $n / 2^{i}$ edges each time
- Update Dijkstra labels lazily

Progressive Dijkstra [Bern'10]

Main issue:

- $(1+\epsilon)$ factors could accumulate

Second idea:

- Run $\log n$ iterations of Dijkstra
- In the i-th iteration, begin with graph $G \backslash \pi$, and add $n / 2^{i}$ edges each time
- Update Dijkstra labels lazily

Progressive Dijkstra [Bern'10]

Main issue:

- $(1+\epsilon)$ factors could accumulate

Second idea:

- Run $\log n$ iterations of Dijkstra
- In the i-th iteration, begin with graph $G \backslash \pi$, and add $n / 2^{i}$ edges each time
- Update Dijkstra labels lazily

$(1+\epsilon)$ factors accumulate $\log n$ times [Bern'10]

Dual-Failure Approx-RP

Two main cases

One failure on st-path

Both failures on st-path

Two main cases

One failure on st-path

Both failures on st-path

Wishful thinking

Wishful thinking

Add edges \& detours one by one using progressive Dijkstra

Wishful thinking

Add edges \& detours one by one using progressive Dijkstra

Wishful thinking

Add edges \& detours one by one using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking

Add edges on detours one by one, also using progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Wishful thinking: technical issues

Main issue: Detours may intersect

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Wishful thinking: technical issues

Main issue: Detours may intersect

Consequence: cannot use progressive Dijkstra

Dealing with detour intersections

Main issue: Detours may intersect
Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Main issue: Detours may intersect
Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Main issue: Detours may intersect
Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Main issue: Detours may intersect
Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Main issue: Detours may intersect
Solution: Concatenate detour while doubling the span on st-path

Two main cases

One failure on st-path

Both failures on st-path

Two main cases

One failure on st-path

Both failures on st-path

Easy \& Hard Cases

A Simplified Setting

Two overlapping detours, two failures on two intervals

A Simplified Setting

Simplifying assumption:
All failures in the interval share the same single-failure replacement path

A Simplified Setting

Simplifying assumption:
All failures in the interval share the same single-failure replacement path

A Simplified Setting

Simplified goal:
Enumerate pairs of failures in both intervals, and compute dual-failure RP

Technical difficulties

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is not monotone

Technical difficulties

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is not monotone

Technical difficulties

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is not monotone

Technical difficulties

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is not monotone

Technical difficulties

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is not monotone

Decoupling dual-failures

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing Solution: Decouple the two failures and use progressive Dijkstra separately

Decoupling dual-failures

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing
Solution: Decouple the two failures and use progressive Dijkstra separately

Decoupling dual-failures

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing
Solution: Decouple the two failures and use progressive Dijkstra separately

Totally disregard this part

Apply progressive Dijkstra for this part

Decoupling dual-failures

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing Solution: Decouple the two failures and use progressive Dijkstra separately

Decoupling dual-failures

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing Solution: Decouple the two failures and use progressive Dijkstra separately

Decoupling dual-failures

Main issue with progressive Dijkstra:

Impossible to order all the pairs so that the graph is monotonically growing
Solution: Decouple the two failures and use progressive Dijkstra separately

Conclusion

Conclusion

- Quadratic time for approximate dual-failure st-shortest paths
- How about approximate single-source RP?
- Approximate single-failure single-source RP in linear time?

