Near-Optimal Approximate **Dual-Failure Replacement Paths**

Shiri Chechik

- Tianyi Zhang
- **Tel Aviv University**

Two-phase problem:

- 1. Preprocess the input graph
- 2. One/multiple links break, and recover info in the new graph

Costs:

- 1. Preprocessing time
- 2. Recovery time

Two-phase problem:

- 1. Preprocess the input graph
- 2. **One/multiple links break**, and recover info in the new graph

Costs:

- 1. Preprocessing time
- 2. Recovery time

Two-phase problem:

- 1. Preprocess the input graph
- 2. **One/multiple links break**, and **recover info** in the new graph

Costs:

- 1. Preprocessing time
- 2. Recovery time

Two-phase problem:

- 1. Preprocess the input graph
- 2. One/multiple links break, and recover info in the new graph

Costs:

- 1. Preprocessing time
- 2. Recovery time

Today's focus:

- 1. Recover shortest paths info
- 2. **Precompute** all answers, so recovery time is poly-log

Other settings:

- 1. Connectivity / reachability
- 2. Preprocessing vs. recovery

Replacement Path

- Weighted directed graph $G = (V, E, \omega)$, source & terminal vertices
- For all $\leq f$ edges $F \subseteq E$, compute dist $(s, t, G \setminus F)$

Replacement Path

- Weighted directed graph $G = (V, E, \omega)$, source & terminal vertices
- For all $\leq f$ edges $F \subseteq E$, compute dist $(s, t, G \setminus F)$

- Total size of output $\leq n^f$ (exercise: why not m^f)
- Trivial algorithm takes time $mn^f \leq n^{f+2}$
- Main question: How to save the quadratic overhead?

Single-failure replacement paths

- Trivial algorithm takes cubic runtime $mn \leq n^3$
- [VW, 2010] showed this is the best possible under a widely believed conjecture
- $(1 + \epsilon)$ -approximations in runtime $m \le n^2$ [Bernstein, 2010]
- **Corollary:** $(1 + \epsilon)$ -approximations for f-failures in $mn^{f-1} \le n^{f+1}$ time

Dual-failure replacement paths

- Optimal exact algorithm in runtime n^3 [VWX, 2022]
- **Corollary:** exact solutions for f-failures in n^{f+1} time when $f \ge 2$

Our result [CZ, 2024]

- $(1 + \epsilon)$ -approximations in runtime n^2 , optimal runtime
- **Corollary:** $(1 + \epsilon)$ -approximations for f-failures in n^f time when $f \ge 2$
- **Open:** exact solutions for 3-failures in n^3 time?

Summary of results

	f = 2	$f \geq 3$
	n ³ [VWX, 2022] [VW, 2010]	n ^{f+1} [VWX, 2022]
0]	n ² New	n ^f New

Different variants of RP (exact)

Single-failure single-source RP

- Unweighted single-source RP in $m\sqrt{n}$ time [CM, 2020]
- Small edge weights single-source RP in $W^{0.805}n^{2.496}$ time [GPWX, 2021]

Single-failure all-pairs RP

• All-pairs RP in $Wn^{2.58}$ time [GR, 2021]

Today's plan

- Review of single-failure approximate st-RP [Bernstein, 2010]
- Two main cases for dual-failure approximate st-RP
 - Only one failure is on the st-path
 - Both failures are on the st-path

Single-Failure Approx-RP [Bernstein'10]

Single-Failure RP

→O t

Single-Failure RP

• Single-failure RP = best detour avoiding intervals

• Compute the detours for all possible failures

• Single-failure RP = best detour avoiding intervals

• Compute the detours for all possible failures

Single-Failure RP

- Single-failure RP = best detour avoiding intervals
- Compute the detours for all possible failures

- Single-failure RP = best detour avoiding intervals
- Compute the detours for all possible failures

Incre maintain all Dijkstra labels

- 1. Start with $G \setminus \pi$
- 2. add back π edge by edge
- 3. Update d(v), but scan outedges of v iff d(v) has decreased by $1 - \epsilon$

Incre maintain all Dijkstra labels

- 1. Start with $G \setminus \pi$
- 2. add back π edge by edge
- 3. Update d(v), but scan outedges of v iff d(v) has decreased by $1 - \epsilon$

Incre maintain all Dijkstra labels

- 1. Start with $G \setminus \pi$
- 2. add back π edge by edge
- 3. Update d(v), but scan outedges of v iff d(v) has decreased by $1 - \epsilon$

Incre maintain all Dijkstra labels

- 1. Start with $G \setminus \pi$
- 2. add back π edge by edge
- 3. Update d(v), but scan outedges of v iff d(v) has decreased by $1 - \epsilon$

Incre maintain all Dijkstra labels

- 1. Start with $G \setminus \pi$
- 2. add back π edge by edge
- 3. Update d(v), but scan outedges of v iff d(v) has decreased by $1 - \epsilon$

Progressive Dijkstra [Bern'10]

Runtime:

- lacksquare
- Total runtime = $n^2 \log_{1+\epsilon}(nW)$

If d(v) doesn't decrease by $1 - \epsilon$, then yellow < $(1 + \epsilon) \times red$

- If d(v) doesn't decrease by 1ϵ , then yellow < $(1 + \epsilon) \times red$
- However, previous iterations only know sv-path

- If d(v) doesn't decrease by 1ϵ , then yellow < $(1 + \epsilon) \times red$
- However, previous iterations only know sv-path
- **vw-path** could be intercepted by even earlier iterations; that is, **blue** < $(1 + \epsilon)$ × yellow

- If d(v) doesn't decrease by 1ϵ , then yellow < $(1 + \epsilon) \times red$
- However, previous iterations only know sv-path
- **vw-path** could be intercepted by even earlier iterations; that is, **blue** < $(1 + \epsilon)$ × yellow
- $(1 + \epsilon)$ factors could accumulate

Progressive Dijkstra [Bern'10]

i-th earlier blue $< (1 + \epsilon)^l \times red$

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily \bullet

• $(1 + \epsilon)$ factors could accumulate

Second idea:

- Run log *n* iterations of Dijkstra
- In the i-th iteration, begin with graph $G \setminus \pi$, and add $n/2^i$ edges each time
- Update Dijkstra labels lazily

Progressive Dijkstra [Bern'10]

 $(1 + \epsilon)$ factors accumulate $\log n$ times [Bern'10]

Two main cases

One failure on st-path

Both failures on st-path

Two main cases

One failure on st-path

Both failures on st-path

Wishful thinking: technical issues Main issue: Detours may intersect sharing edges What it looks like

Wishful thinking: technical issues Main issue: Detours may intersect sharing edges What it actually is

Wishful thinking: technical issues Main issue: Detours may intersect sharing edges What it actually is

Main issue: Detours may intersect

Main issue: Detours may intersect

Wishful thinking: technical issues Main issue: Detours may intersect sharing edges Same edge! Cannot add it again! S

Main issue: Detours may intersect

Main issue: Detours may intersect

Two main cases

One failure on st-path

Both failures on st-path

Two main cases

One failure on st-path

Both failures on st-path

Two overlapping detours, two failures on two intervals

A Simplified Setting

Simplifying assumption:

All failures in the interval share the same single-failure replacement path

All failures in the interval share the same single-failure replacement path

A Simplified Setting

a

S

Simplified goal:

Χ

Enumerate pairs of failures in both intervals, and compute dual-failure RP

Main issue with progressive Dijkstra: For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is **not monotone**

Main issue with progressive Dijkstra: For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is **not monotone**

Main issue with progressive Dijkstra: For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is **not monotone**

Main issue with progressive Dijkstra: For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is **not monotone**

Main issue with progressive Dijkstra: For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is **not monotone**

- Impossible to order all the pairs so that the graph is monotonically growing
- **Solution:** Decouple the two failures and use progressive Dijkstra separately

- Impossible to order all the pairs so that the graph is monotonically growing
- **Solution:** Decouple the two failures and use progressive Dijkstra separately

- Impossible to order all the pairs so that the graph is monotonically growing
- **Solution:** Decouple the two failures and use progressive Dijkstra separately

- Impossible to order all the pairs so that the graph is monotonically growing
- **Solution:** Decouple the two failures and use progressive Dijkstra separately

- Impossible to order all the pairs so that the graph is monotonically growing
- **Solution:** Decouple the two failures and use progressive Dijkstra separately

Main issue with progressive Dijkstra:

- Impossible to order all the pairs so that the graph is monotonically growing
- **Solution:** Decouple the two failures and use progressive Dijkstra separately

Apply progressive Dijkstra for this part

Conclusion

Conclusion

- How about approximate single-source RP?

• Quadratic time for approximate dual-failure st-shortest paths

Approximate single-failure single-source RP in linear time?