
Near-Optimal Approximate
Dual-Failure Replacement Paths

Shiri Chechik Tianyi Zhang

Tel Aviv University

Emergency Planning
Two-phase problem:

1. Preprocess the input graph

2. One/multiple links break, and
recover info in the new graph

Costs:

1. Preprocessing time

2. Recovery time

Emergency Planning
Two-phase problem:

1. Preprocess the input graph

2. One/multiple links break, and
recover info in the new graph

Costs:

1. Preprocessing time

2. Recovery time

Emergency Planning
Two-phase problem:

1. Preprocess the input graph

2. One/multiple links break, and
recover info in the new graph

Costs:

1. Preprocessing time

2. Recovery time

connectivity

reachability

shortest paths

Emergency Planning
Two-phase problem:

1. Preprocess the input graph

2. One/multiple links break, and
recover info in the new graph

Costs:

1. Preprocessing time

2. Recovery time

Today’s focus:

1. Recover shortest paths info

2. Precompute all answers, so
recovery time is poly-log

Other settings:

1. Connectivity / reachability

2. Preprocessing vs. recovery

Replacement Path

• Weighted directed graph , source & terminal vertices

• For all edges , compute

G = (V, E, ω)

≤ f F ⊆ E 𝖽𝗂𝗌𝗍(s, t, G∖F)

s t

detour

Replacement Path

• Total size of output (exercise: why not)

• Trivial algorithm takes time

• Main question: How to save the quadratic overhead?

≤ nf mf

mnf ≤ nf+2

• Weighted directed graph , source & terminal vertices

• For all edges , compute

G = (V, E, ω)

≤ f F ⊆ E 𝖽𝗂𝗌𝗍(s, t, G∖F)

Single-failure replacement paths

• Trivial algorithm takes cubic runtime

• [VW, 2010] showed this is the best possible under a widely believed conjecture

• -approximations in runtime [Bernstein, 2010]

• Corollary: -approximations for f-failures in time

mn ≤ n3

(1 + ϵ) m ≤ n2

(1 + ϵ) mnf−1 ≤ nf+1

Dual-failure replacement paths
• Optimal exact algorithm in runtime [VWX, 2022]

• Corollary: exact solutions for f-failures in time when

n3

nf+1 f ≥ 2

Our result [CZ, 2024]

• -approximations in runtime , optimal runtime

• Corollary: -approximations for f-failures in time when

• Open: exact solutions for 3-failures in time?

(1 + ϵ) n2

(1 + ϵ) nf f ≥ 2

n3

Summary of results

Exact
[VW, 2010] [VWX, 2022] [VW, 2010] [VWX, 2022]

Approximate
[Bernstein, 2010] New New

f ≥ 3f = 2f = 1

n3 n3 nf+1

n2 n2 nf

Different variants of RP (exact)

Special cases of single-failure RP

• Undirected RP in linear time
[NPW, 2001]

• Unweighted RP in time
[RZ, 2012]

• Small edge weights RP in time
[CN, 2020]

m n

Wnω

Single-failure single-source RP

• Unweighted single-source RP in
 time [CM, 2020]

• Small edge weights single-source
RP in time [GPWX, 2021]

m n

W0.805n2.496

Single-failure all-pairs RP
• All-pairs RP in time [GR, 2021]Wn2.58

Today’s plan

• Review of single-failure approximate st-RP [Bernstein, 2010]

• Two main cases for dual-failure approximate st-RP

• Only one failure is on the st-path

• Both failures are on the st-path

Single-Failure Approx-RP
[Bernstein’10]

s t

Single-Failure RP

s t

Single-Failure RP

s t

detour

Single-Failure RP

s t

detour

• Single-failure RP = best detour avoiding intervals

• Compute the detours for all possible failures

Single-Failure RP

s t

detour

Single-Failure RP

• Single-failure RP = best detour avoiding intervals

• Compute the detours for all possible failures

s t

detour detour

Single-Failure RP

• Single-failure RP = best detour avoiding intervals

• Compute the detours for all possible failures

s t

detour detour detour

Single-Failure RP

• Single-failure RP = best detour avoiding intervals

• Compute the detours for all possible failures

Progressive Dijkstra [Bern’10]

First idea:

Incre maintain all Dijkstra labels

1. Start with

2. add back edge by edge

3. Update , but scan out-
edges of v iff has
decreased by

G∖π

π

d(v)
d(v)
1 − ϵ s t

d(v)

Progressive Dijkstra [Bern’10]

s t

First idea:

Incre maintain all Dijkstra labels

1. Start with

2. add back edge by edge

3. Update , but scan out-
edges of v iff has
decreased by

G∖π

π

d(v)
d(v)
1 − ϵ

d(v)

add one edge

Progressive Dijkstra [Bern’10]

s t

First idea:

Incre maintain all Dijkstra labels

1. Start with

2. add back edge by edge

3. Update , but scan out-
edges of v iff has
decreased by

G∖π

π

d(v)
d(v)
1 − ϵ

d(v)

add one edge

Dijkstra finds

a new path

Progressive Dijkstra [Bern’10]

s t

First idea:

Incre maintain all Dijkstra labels

1. Start with

2. add back edge by edge

3. Update , but scan out-
edges of v iff has
decreased by

G∖π

π

d(v)
d(v)
1 − ϵ

add one edge

d(v)

Dijkstra finds

a new path

Prune Dijkstra at
this node if d(v)

does not decrease
by 1 − ϵ

Progressive Dijkstra [Bern’10]

s t

First idea:

Incre maintain all Dijkstra labels

1. Start with

2. add back edge by edge

3. Update , but scan out-
edges of v iff has
decreased by

G∖π

π

d(v)
d(v)
1 − ϵ

add one edge

d(v)

Dijkstra finds

a new path

Prune Dijkstra at
this node if d(v)

does not decrease
by 1 − ϵ

Runtime:

• Each out-neighbor scanned times

• Total runtime =

log1+ϵ(nW)

n2 log1+ϵ(nW)

Progressive Dijkstra [Bern’10]

s t

v

w

Approximation error:

• If doesn’t decrease by ,
then yellow < red

d(v) 1 − ϵ
(1 + ϵ) ×

Progressive Dijkstra [Bern’10]

s t

Approximation error:

• If doesn’t decrease by ,
then yellow < red

• However, previous iterations only
know sv-path

d(v) 1 − ϵ
(1 + ϵ) ×

v

w

Progressive Dijkstra [Bern’10]

s t

Approximation error:

• If doesn’t decrease by ,
then yellow < red

• However, previous iterations only
know sv-path

• vw-path could be intercepted by
even earlier iterations; that is,
blue < yellow

d(v) 1 − ϵ
(1 + ϵ) ×

(1 + ϵ) ×

v

w

u

Progressive Dijkstra [Bern’10]

s t

Approximation error:

• If doesn’t decrease by ,
then yellow < red

• However, previous iterations only
know sv-path

• vw-path could be intercepted by
even earlier iterations; that is,
blue < yellow

• factors could accumulate

d(v) 1 − ϵ
(1 + ϵ) ×

(1 + ϵ) ×

(1 + ϵ)

v

w

u

…
…

i-th earlier blue < red(1 + ϵ)i ×

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter

s t

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2

s t

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s t

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4 n/4

s t
-iteri

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4 n/4

s t
-iteri

n/2i

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4 n/4

s t
-iteri

n/2i n/2i

…
…

…
…

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4 n/4

s t
-iteri

n/2i n/2i

…
…

…
…

……

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4 n/4

s t
-iteri

n/2i n/2i

…
…

…
…

……
n/2i

…
…

2-iter

Progressive Dijkstra [Bern’10]

s t

Main issue:

• factors could accumulate

Second idea:

• Run iterations of Dijkstra

• In the i-th iteration, begin with
graph , and add edges
each time

• Update Dijkstra labels lazily

(1 + ϵ)

log n

G∖π n/2i

1-iter
n/2 n/2

s tn/4 n/4 n/4 n/4

s t
-iteri

n/2i n/2i

…
…

…
…

……
n/2i

…
…

 factors accumulate times [Bern’10](1 + ϵ) log n

2-iter

Dual-Failure Approx-RP

Two main cases

One failure on st-path Both failures on st-path

Two main cases

One failure on st-path Both failures on st-path

Wishful thinking

single edge single edge single edge single edge

edge disjoint

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

s t

Add edges & detours one by one using progressive Dijkstra

Wishful thinking

single edge single edge single edge single edge

edge disjoint

s t

Add edges & detours one by one using progressive Dijkstra

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges & detours one by one using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Wishful thinking

single edge single edge single edge single edge

edge disjoint

Add edges on detours one by one, also using progressive Dijkstra

s t

Not exactly the same scenario as
the single-failure case, but details

are not covered in this talk

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

s t

What it looks like

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

s t

What it actually is

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

s t

What it actually is

Consequence: cannot use progressive Dijkstra

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra
s t

Main issue: Detours may intersect

Wishful thinking: technical issues

sharing edges

Consequence: cannot use progressive Dijkstra

Same edge!
Cannot add it again!

s t

Main issue: Detours may intersect

Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

s t

Main issue: Detours may intersect

Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Same edge
on both detours

s t

Main issue: Detours may intersect

Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Same edge
on both detours

Concatenate the two detours
to create a larger detour

s t

Main issue: Detours may intersect

Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Same edge
on both detours

Concatenate the two detours
to create a larger detour

2i 2is t

Main issue: Detours may intersect

Solution: Concatenate detour while doubling the span on st-path

Dealing with detour intersections

Same edge
on both detours

Concatenate the two detours
to create a larger detour

2i 2i

2i+1

s t

Two main cases

One failure on st-path Both failures on st-path

Two main cases

One failure on st-path Both failures on st-path

Easy & Hard Cases

Easy & Hard Cases

Easy case:
Using both detours is a good

dual-failure replacement paths

Easy & Hard Cases

Easy & Hard Cases

Hard case:
Not clear how to use the detours

Easy & Hard Cases

A Simplified Setting

Two overlapping detours, two failures on two intervals

s ta bx y

A Simplified Setting

Simplifying assumption:
All failures in the interval share the same single-failure replacement path

s ta bx y

A Simplified Setting

Simplifying assumption:
All failures in the interval share the same single-failure replacement path

s ta bx y

A Simplified Setting

Simplified goal:
Enumerate pairs of failures in both intervals, and compute dual-failure RP

s ta bx y

Technical difficulties

Using an alphabetic order of the failure pairs, the graph is not monotone

Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

For example, alphabetic order does not work

s ta bx y

Technical difficulties

Using an alphabetic order of the failure pairs, the graph is not monotone

Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

For example, alphabetic order does not work

s ta bx y

Technical difficulties

Using an alphabetic order of the failure pairs, the graph is not monotone

Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

For example, alphabetic order does not work

s ta bx y

Technical difficulties

Using an alphabetic order of the failure pairs, the graph is not monotone

Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

For example, alphabetic order does not work

s ta bx y

Technical difficulties
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

For example, alphabetic order does not work

Using an alphabetic order of the failure pairs, the graph is not monotone

The 1st failure
steps forward

Remove all edges and start over,
so it is not monotone

s ta bx y

Decoupling dual-failures
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

Solution: Decouple the two failures and use progressive Dijkstra separately

If the dual-RP does not reach here

s ta bx y

Decoupling dual-failures
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

Solution: Decouple the two failures and use progressive Dijkstra separately

If the dual-RP does not reach here

Reroute the dual-RP

s ta bx y

Decoupling dual-failures
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

Solution: Decouple the two failures and use progressive Dijkstra separately

Totally disregard this part

Apply progressive Dijkstra for this part
s a bx

Decoupling dual-failures
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

Solution: Decouple the two failures and use progressive Dijkstra separately

If the dual-RP reaches here

s ta bx y

Decoupling dual-failures
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

Solution: Decouple the two failures and use progressive Dijkstra separately

If the dual-RP reaches here

Reroute the dual-RP

s ta bx y

Decoupling dual-failures
Main issue with progressive Dijkstra:
Impossible to order all the pairs so that the graph is monotonically growing

Solution: Decouple the two failures and use progressive Dijkstra separately

Totally disregard this part

Apply progressive Dijkstra for this part
tbx y

Conclusion

Conclusion

• Quadratic time for approximate dual-failure st-shortest paths

• How about approximate single-source RP?

• Approximate single-failure single-source RP in linear time?

