

# Vizing's Theorem in Near-Linear Time

## 1. Background & Results

In simple graph G = (V, E), compute a mapping (coloring)  $\phi: E \to [k]$ , such that adjacent edges have different values (colors).



**Edge Chromatic Number**  $\chi_1(G) = \min \#$ colors Trivial bound:  $\chi_1(G) \ge \Delta$   $\Delta = \max \deg_G(v)$ Vizing's theorem (1964):  $\chi_1(G) \leq \Delta + 1$ NP-hard  $\chi_1(G) \in \{\Delta, \Delta + 1\}$ ? [Holyer, 1981]

#### History of Fast $(\Delta + 1)$ -Edge Coloring



#### Main Result

 $(\Delta + 1)$ -edge coloring in  $O(m \log \Delta)$  time whp

#### **Other Result**

in multi-graphs (Shannon's theorem)

Previous runtime of  $|3\Delta/2|$ -edge coloring:  $O(mn + m\Delta)$ [Shannon, 1949]  $O(n \cdot \text{poly}(\Delta))$ [Dhawan, 2024]



### **2.** Color Extension in Bipartite Graphs **The Color Extension Problem**

 $\phi$  to all edges in the graph?

time is sufficient for the original problem

#### **Alternating Paths in Bipartite Graphs**

and then assign  $\alpha$  to edge (u, v)



